Search
00
GBAF Logo
trophy
Top StoriesInterviewsBusinessFinanceBankingTechnologyInvestingTradingVideosAwardsMagazinesHeadlinesTrends

Subscribe to our newsletter

Get the latest news and updates from our team.

Global Banking and Finance Review

Global Banking & Finance Review

Company

    GBAF Logo
    • About Us
    • Profile
    • Privacy & Cookie Policy
    • Terms of Use
    • Contact Us
    • Advertising
    • Submit Post
    • Latest News
    • Research Reports
    • Press Release
    • Awards▾
      • About the Awards
      • Awards TimeTable
      • Submit Nominations
      • Testimonials
      • Media Room
      • Award Winners
      • FAQ
    • Magazines▾
      • Global Banking & Finance Review Magazine Issue 79
      • Global Banking & Finance Review Magazine Issue 78
      • Global Banking & Finance Review Magazine Issue 77
      • Global Banking & Finance Review Magazine Issue 76
      • Global Banking & Finance Review Magazine Issue 75
      • Global Banking & Finance Review Magazine Issue 73
      • Global Banking & Finance Review Magazine Issue 71
      • Global Banking & Finance Review Magazine Issue 70
      • Global Banking & Finance Review Magazine Issue 69
      • Global Banking & Finance Review Magazine Issue 66
    Top StoriesInterviewsBusinessFinanceBankingTechnologyInvestingTradingVideosAwardsMagazinesHeadlinesTrends

    Global Banking & Finance Review® is a leading financial portal and online magazine offering News, Analysis, Opinion, Reviews, Interviews & Videos from the world of Banking, Finance, Business, Trading, Technology, Investing, Brokerage, Foreign Exchange, Tax & Legal, Islamic Finance, Asset & Wealth Management.
    Copyright © 2010-2025 GBAF Publications Ltd - All Rights Reserved.

    ;
    Editorial & Advertiser disclosure

    Global Banking and Finance Review is an online platform offering news, analysis, and opinion on the latest trends, developments, and innovations in the banking and finance industry worldwide. The platform covers a diverse range of topics, including banking, insurance, investment, wealth management, fintech, and regulatory issues. The website publishes news, press releases, opinion and advertorials on various financial organizations, products and services which are commissioned from various Companies, Organizations, PR agencies, Bloggers etc. These commissioned articles are commercial in nature. This is not to be considered as financial advice and should be considered only for information purposes. It does not reflect the views or opinion of our website and is not to be considered an endorsement or a recommendation. We cannot guarantee the accuracy or applicability of any information provided with respect to your individual or personal circumstances. Please seek Professional advice from a qualified professional before making any financial decisions. We link to various third-party websites, affiliate sales networks, and to our advertising partners websites. When you view or click on certain links available on our articles, our partners may compensate us for displaying the content to you or make a purchase or fill a form. This will not incur any additional charges to you. To make things simpler for you to identity or distinguish advertised or sponsored articles or links, you may consider all articles or links hosted on our site as a commercial article placement. We will not be responsible for any loss you may suffer as a result of any omission or inaccuracy on the website.

    Home > Technology > SCALING A SMALL DATA TEAM WITH THE POWER OF MACHINE LEARNING
    Technology

    SCALING A SMALL DATA TEAM WITH THE POWER OF MACHINE LEARNING

    SCALING A SMALL DATA TEAM WITH THE POWER OF MACHINE LEARNING

    Published by Gbaf News

    Posted on January 5, 2018

    Featured image for article about Technology

    How DAZN uses AWS and Dataiku to make Big Data with a Small Team and allow their non-technical staff to perform advanced customer segmentation, content attribution, churn prediction, and more.

    In an effort to continue to grow their business in existing and new markets, DAZN – a live and on-demand sports streaming service – wanted a fast, low-maintenance way to enable their small data team to run predictive analytics and machine learning projects at scale.

    The company wanted to find a way to allow data analysts who were not necessarily technical or experienced in machine learning to be able to contribute in meaningful ways to impactful data projects. Ultimately, they wanted to support an underlying data culture with advanced analytics and machine learning at the heart of the business.

    The Situation

    Until recently, the sports entertainment industry was dominated by cable or satellite TV systems and companies; if a customer wanted to watch a particular sporting event, he had little or no choice in how to do so. Now that consumers are breaking free from traditional TV, they are increasingly turning to specialized services streaming exactly the content they’re looking for, whether live or on-demand. And while they are willing to pay for these services, it means that entertainment companies – in the absence of the aforementioned virtual monopoly of TV broadcasts – are held to increasingly higher standards when it comes to quality and offerings.

    In other words, because customers can turn elsewhere, entertainment companies have had to up their game, so to speak.  Today, that means bringing innovation by way of predictive analytics and machine learning to optimize every aspect of the business, from marketing to customer service to product offerings. To do this efficiently, they must also bring this innovation at scale, hiring fewer people to do more such that insights grow exponentially along with the amount of data being collected.

    The Need for Big Data with a Small Staff

    DAZN knew that in order to accomplish their goals quickly, they would need technologies that were simple and in the cloud. They turned to Amazon Web Services (AWS) and Dataiku in combination for their simplicity in setup, connection, integration, and usability, and they got up and running in under one hour.

    With AWS and Dataiku, the small data team built and now manages more than 30 models in parallel, all without needing to do any coding so that the processes are completely accessible to non-technical team members. They use these models as the basis for a variety of critical processes throughout all areas of the business, specifically:

    • Content attribution to determine what fixtures are driving sales, enabling contextual information on key fixtures in each market.
    • Advanced customer segmentation to identify user behaviors, particularly regarding content and devices on which customers use the product.
    • Propensity modeling to identify customers that are likely to churn, enabling improved customer targeting for retention activities.
    • Survival analysis to understand customer stickiness, enabling calculation of expected revenues to understand customer return on investment.
    • Natural language processing on social networks for market research

    Results of More Effective Team Members = More Data Science

    AWS and Dataiku have noticeably shifted the data culture at DAZN and have brought innovations in advanced analytics and machine learning into the spotlight throughout the company. Thanks to Dataiku’s ease, simplicity, and huge efficiency gains, DAZN has hired two data analysts who have already gotten up to speed and are doing as much work as five analysts in the pre-Dataiku team. In addition, the company has found that each data team member 2.5x more efficient in putting models in production.

    Overall, the biggest impact has been empowering a non-technical team to create more models than ever before and get them into the production environment quickly to bring real ROI to the business. DAZN plans to continue to grow the team to three data scientists and 6-10 analysts to exponentially increase the number of machine learning models in production.

    To learn more about how Dataiku helps companies across all industries visit:www.dataiku.com

    How DAZN uses AWS and Dataiku to make Big Data with a Small Team and allow their non-technical staff to perform advanced customer segmentation, content attribution, churn prediction, and more.

    In an effort to continue to grow their business in existing and new markets, DAZN – a live and on-demand sports streaming service – wanted a fast, low-maintenance way to enable their small data team to run predictive analytics and machine learning projects at scale.

    The company wanted to find a way to allow data analysts who were not necessarily technical or experienced in machine learning to be able to contribute in meaningful ways to impactful data projects. Ultimately, they wanted to support an underlying data culture with advanced analytics and machine learning at the heart of the business.

    The Situation

    Until recently, the sports entertainment industry was dominated by cable or satellite TV systems and companies; if a customer wanted to watch a particular sporting event, he had little or no choice in how to do so. Now that consumers are breaking free from traditional TV, they are increasingly turning to specialized services streaming exactly the content they’re looking for, whether live or on-demand. And while they are willing to pay for these services, it means that entertainment companies – in the absence of the aforementioned virtual monopoly of TV broadcasts – are held to increasingly higher standards when it comes to quality and offerings.

    In other words, because customers can turn elsewhere, entertainment companies have had to up their game, so to speak.  Today, that means bringing innovation by way of predictive analytics and machine learning to optimize every aspect of the business, from marketing to customer service to product offerings. To do this efficiently, they must also bring this innovation at scale, hiring fewer people to do more such that insights grow exponentially along with the amount of data being collected.

    The Need for Big Data with a Small Staff

    DAZN knew that in order to accomplish their goals quickly, they would need technologies that were simple and in the cloud. They turned to Amazon Web Services (AWS) and Dataiku in combination for their simplicity in setup, connection, integration, and usability, and they got up and running in under one hour.

    With AWS and Dataiku, the small data team built and now manages more than 30 models in parallel, all without needing to do any coding so that the processes are completely accessible to non-technical team members. They use these models as the basis for a variety of critical processes throughout all areas of the business, specifically:

    • Content attribution to determine what fixtures are driving sales, enabling contextual information on key fixtures in each market.
    • Advanced customer segmentation to identify user behaviors, particularly regarding content and devices on which customers use the product.
    • Propensity modeling to identify customers that are likely to churn, enabling improved customer targeting for retention activities.
    • Survival analysis to understand customer stickiness, enabling calculation of expected revenues to understand customer return on investment.
    • Natural language processing on social networks for market research

    Results of More Effective Team Members = More Data Science

    AWS and Dataiku have noticeably shifted the data culture at DAZN and have brought innovations in advanced analytics and machine learning into the spotlight throughout the company. Thanks to Dataiku’s ease, simplicity, and huge efficiency gains, DAZN has hired two data analysts who have already gotten up to speed and are doing as much work as five analysts in the pre-Dataiku team. In addition, the company has found that each data team member 2.5x more efficient in putting models in production.

    Overall, the biggest impact has been empowering a non-technical team to create more models than ever before and get them into the production environment quickly to bring real ROI to the business. DAZN plans to continue to grow the team to three data scientists and 6-10 analysts to exponentially increase the number of machine learning models in production.

    To learn more about how Dataiku helps companies across all industries visit:www.dataiku.com

    Related Posts
    Treasury transformation must be built on accountability and trust
    Treasury transformation must be built on accountability and trust
    Financial services: a human-centric approach to managing risk
    Financial services: a human-centric approach to managing risk
    LakeFusion Secures Seed Funding to Advance AI-Native Master Data Management
    LakeFusion Secures Seed Funding to Advance AI-Native Master Data Management
    Clarity, Context, Confidence: Explainable AI and the New Era of Investor Trust
    Clarity, Context, Confidence: Explainable AI and the New Era of Investor Trust
    Data Intelligence Transforms the Future of Credit Risk Strategy
    Data Intelligence Transforms the Future of Credit Risk Strategy
    Architect of Integration Ushers in a New Era for AI in Regulated Industries
    Architect of Integration Ushers in a New Era for AI in Regulated Industries
    How One Technologist is Building Self-Healing AI Systems that Could Transform Financial Regulation
    How One Technologist is Building Self-Healing AI Systems that Could Transform Financial Regulation
    SBS is Doubling Down on SaaS to Power the Next Wave of Bank Modernization
    SBS is Doubling Down on SaaS to Power the Next Wave of Bank Modernization
    Trust Embedding: Integrating Governance into Next-Generation Data Platforms
    Trust Embedding: Integrating Governance into Next-Generation Data Platforms
    The Guardian of Connectivity: How Rohith Kumar Punithavel Is Redefining Trust in Private Networks
    The Guardian of Connectivity: How Rohith Kumar Punithavel Is Redefining Trust in Private Networks
    BNY Partners With HID and SwiftConnect to Provide Mobile Access to its Offices Around the Globe With Employee Badge in Apple Wallet
    BNY Partners With HID and SwiftConnect to Provide Mobile Access to its Offices Around the Globe With Employee Badge in Apple Wallet
    How Integral’s CTO Chidambaram Bhat is helping to solve  transfer pricing problems through cutting edge AI.
    How Integral’s CTO Chidambaram Bhat is helping to solve transfer pricing problems through cutting edge AI.

    Why waste money on news and opinions when you can access them for free?

    Take advantage of our newsletter subscription and stay informed on the go!

    Subscribe

    Previous Technology PostSOPHISTICATED CYBER THREATS ARE BIGGEST TECHNOLOGY FEAR FOR FINANCIAL AND PUBLIC SECTOR IN 2018
    Next Technology PostHow to Find the MAC Address on Windows 10?

    More from Technology

    Explore more articles in the Technology category

    Why Physical Infrastructure Still Matters in a Digital Economy

    Why Physical Infrastructure Still Matters in a Digital Economy

    Why Compliance Has Become an Engineering Problem

    Why Compliance Has Become an Engineering Problem

    Can AI-Powered Security Prevent $4.2 Billion in Banking Fraud?

    Can AI-Powered Security Prevent $4.2 Billion in Banking Fraud?

    Reimagining Human-Technology Interaction: Sagar Kesarpu’s Mission to Humanize Automation

    Reimagining Human-Technology Interaction: Sagar Kesarpu’s Mission to Humanize Automation

    LeapXpert: How financial institutions can turn shadow messaging from a risk into an opportunity

    LeapXpert: How financial institutions can turn shadow messaging from a risk into an opportunity

    Intelligence in Motion: Building Predictive Systems for Global Operations

    Intelligence in Motion: Building Predictive Systems for Global Operations

    Predictive Analytics and Strategic Operations: Strengthening Supply Chain Resilience

    Predictive Analytics and Strategic Operations: Strengthening Supply Chain Resilience

    How Nclude.ai   turned broken portals into completed applications

    How Nclude.ai turned broken portals into completed applications

    The Silent Shift: Rethinking Services for a Digital World?

    The Silent Shift: Rethinking Services for a Digital World?

    Culture as Capital: How Woxa Corporation Is Redefining Fintech Sustainability

    Culture as Capital: How Woxa Corporation Is Redefining Fintech Sustainability

    Securing the Future: We're Fixing Cyber Resilience by Finally Making Compliance Cool

    Securing the Future: We're Fixing Cyber Resilience by Finally Making Compliance Cool

    Supply chain security risks now innumerable and unmanageable for majority of cybersecurity leaders, IO research reveals

    Supply chain security risks now innumerable and unmanageable for majority of cybersecurity leaders, IO research reveals

    View All Technology Posts