Editorial & Advertiser Disclosure Global Banking And Finance Review is an independent publisher which offers News, information, Analysis, Opinion, Press Releases, Reviews, Research reports covering various economies, industries, products, services and companies. The content available on globalbankingandfinance.com is sourced by a mixture of different methods which is not limited to content produced and supplied by various staff writers, journalists, freelancers, individuals, organizations, companies, PR agencies Sponsored Posts etc. The information available on this website is purely for educational and informational purposes only. We cannot guarantee the accuracy or applicability of any of the information provided at globalbankingandfinance.com with respect to your individual or personal circumstances. Please seek professional advice from a qualified professional before making any financial decisions. Globalbankingandfinance.com also links to various third party websites and we cannot guarantee the accuracy or applicability of the information provided by third party websites. Links from various articles on our site to third party websites are a mixture of non-sponsored links and sponsored links. Only a very small fraction of the links which point to external websites are affiliate links. Some of the links which you may click on our website may link to various products and services from our partners who may compensate us if you buy a service or product or fill a form or install an app. This will not incur additional cost to you. A very few articles on our website are sponsored posts or paid advertorials. These are marked as sponsored posts at the bottom of each post. For avoidance of any doubts and to make it easier for you to differentiate sponsored or non-sponsored articles or links, you may consider all articles on our site or all links to external websites as sponsored . Please note that some of the services or products which we talk about carry a high level of risk and may not be suitable for everyone. These may be complex services or products and we request the readers to consider this purely from an educational standpoint. The information provided on this website is general in nature. Global Banking & Finance Review expressly disclaims any liability without any limitation which may arise directly or indirectly from the use of such information.


By Karthik Krishnamurthy, Vice President, Enterprise Information Management, Cognizant

Banking is a massive, complex industry with many facets—retail banks, credit card lenders, managed investing, risk management—all of whom approach fraud detection and prevention differently. Credit card fraud makes up around 40% of the total problem. According to Consumer Sentinel Network, U.S. Department of Justice, the total amount of credit card fraud worldwide is $5.55 billion and on the rise.

Karthik Krishnamurthy, Vice President, Enterprise Information Management, Cognizant
Karthik Krishnamurthy, Vice President, Enterprise Information Management, Cognizant

The sheer volume of loss attributed to fraud is pressuring financial services companies to devise solutions to prevent and identify fraud, while continuing to provide a positive and customized experience for an increasingly sophisticated customer.

In order to achieve a more accurate and less intrusive fraud detection system, banks and financial service institutions are increasingly investing to perfect the algorithms and data analytics technology used to spot and combat fraud. This technology uses large volumes of data being generated at a high velocity to increase confidence and accuracy in fraud detection.

Increasing Accuracy in Fraud Detection

As a highly customer-centric industry, banks and financial service providers need to make sure they are attacking fraud strategically and not disrupting their customers’ banking experience. The key to accurate and non-disruptive fraud detection is to implement emerging technology that allows banks to gain a holistic view of its customers.

This view of fraud detection uses data available from a variety of sources—mobile data, along with social data from Facebook and Twitter—and uses it to distinguish fraudulent activity from normal activity. For example, if a credit card customer fails to alert her card lender of her travel plans, a strategically implemented fraud detection system can enable the lender to automatically gain insight from mobile and social data that the customer is travelling and thereby reduce the incidence of false positives. With this additional insight, the lender’s algorithm may determine that the likelihood of fraudulent activity is very low, and the customer’s card activity should be allowed to proceed.

Using social data to ‘cluster’ information is another innovative approach. For example, if the cardholder’s social media contacts are tagged as co-workers and their social profiles indicate their current geographical disposition, a bank can use this information again to correlate recent charges incurred by the cardholder.

Machine Learning

An emerging and powerful aspect of big data and fraud detection is machine learning. In a nutshell, machine learning takes place when agile systems are configured to learn from one another. It discovers the patterns buried in data and learns from it to deliver higher quality insights, helping detect fraud in real time and adapting its systems to more quickly identify fraud in the future. This technology is revolutionary in fraud detection and banks and financial service companies implementing it are gaining a significant competitive advantage.

Machine learning models are increasingly being used to screen financial transactions for fraud. Text mining and machine learning technologies are effectively used to combine data from suspicious transactions with related extracts from other internal and external sources (such as social networks). One immediate benefit, as discussed earlier, is to effectively reduce the amount of false positive hits thrown out by the existing surveillance systems, thereby reducing the costs of manual inspection and making fraud detection more relevant and accurate.

Best Practices for Implementing Big Data

Banking and financial services institutions are increasingly aware of the benefits of leveraging big data in fraud detection, but often struggle with where to get started. The following best practices should be considered when developing a strategy:

  • Start with small and specific uses for big data: The first thing organizations should do is identify one or two business problems that can be resolved by improving fraud detection, and then dedicate the R&D resources to develop solutions. This type of ‘outcome-based thinking’ will ensure the business success of the initiative.
  • Ensure you’re working with high quality data: Take the time on the back end to ensure you are collecting the proper data and are separating the signal from the noise to allow for proper data analysis.
  • Know your regulatory environment: Understand the boundaries for using customer data and the relevant privacy laws. This will continue to be a challenge for organizations, but can be managed with the right approach.
  • Ensure IT and business units are collaborating: Implementing big data systems can be disruptive to an organization. Adopt destination-driven thinking where you and your team articulate and agree upon clear goals, and then evangelize your big data strategy across the organization to gain broad buy-in. These clear objectives will motivate teams to work through inevitable friction.

Looking Ahead

The beauty of big data is that it presents a new realm of possibilities for the financial services industry and, more importantly, will help organizations run differently. Technology will continue to advance and offer new strategies for optimizing fraud detection. Financial services organizations should ensure their internal teams are informed about trends and developments, or are partnering with experts who effectively help them stay ahead of the technology curve.

Big Data allows financial services firms to greatly enhance the speed of fraud detection and prediction using massive amounts of data from a hybrid of sources: point of sale, social media, customer databases, and external sources from data vendors. The analytic results from this data are growing into a collective “fraud database” for the financial services industry, which is driving new analytical models.

In the future however, Big Data will help deal with the globalization of fraud itself. On a global scale criminals are developing fraud tactics and scenarios driven by data and analytics.  They use data to probe for weaknesses and monitor the “success” of fraud programs they initiate. As computing resources become cheaper and faster in an internet world where a “location” is very much a virtual presence, criminal enterprises can move operations in a borderless digital world.

The challenges that the financial services industry faces with fraud have an enormous impact on customer service and the fight to lower fraud loss. Real-time analytics and machine learning built on top of a Big Data repository represent the solution platform for fraud detection and predictive/preventable fraud while maintaining a highly level of customer satisfaction.