Search
00
GBAF Logo
trophy
Top StoriesInterviewsBusinessFinanceBankingTechnologyInvestingTradingVideosAwardsMagazinesHeadlinesTrends

Subscribe to our newsletter

Get the latest news and updates from our team.

Global Banking & Finance Review®

Global Banking & Finance Review® - Subscribe to our newsletter

Company

    GBAF Logo
    • About Us
    • Profile
    • Privacy & Cookie Policy
    • Terms of Use
    • Contact Us
    • Advertising
    • Submit Post
    • Latest News
    • Research Reports
    • Press Release
    • Awards▾
      • About the Awards
      • Awards TimeTable
      • Submit Nominations
      • Testimonials
      • Media Room
      • Award Winners
      • FAQ
    • Magazines▾
      • Global Banking & Finance Review Magazine Issue 79
      • Global Banking & Finance Review Magazine Issue 78
      • Global Banking & Finance Review Magazine Issue 77
      • Global Banking & Finance Review Magazine Issue 76
      • Global Banking & Finance Review Magazine Issue 75
      • Global Banking & Finance Review Magazine Issue 73
      • Global Banking & Finance Review Magazine Issue 71
      • Global Banking & Finance Review Magazine Issue 70
      • Global Banking & Finance Review Magazine Issue 69
      • Global Banking & Finance Review Magazine Issue 66
    Top StoriesInterviewsBusinessFinanceBankingTechnologyInvestingTradingVideosAwardsMagazinesHeadlinesTrends

    Global Banking & Finance Review® is a leading financial portal and online magazine offering News, Analysis, Opinion, Reviews, Interviews & Videos from the world of Banking, Finance, Business, Trading, Technology, Investing, Brokerage, Foreign Exchange, Tax & Legal, Islamic Finance, Asset & Wealth Management.
    Copyright © 2010-2026 GBAF Publications Ltd - All Rights Reserved. | Sitemap | Tags | Developed By eCorpIT

    Editorial & Advertiser disclosure

    Global Banking & Finance Review® is an online platform offering news, analysis, and opinion on the latest trends, developments, and innovations in the banking and finance industry worldwide. The platform covers a diverse range of topics, including banking, insurance, investment, wealth management, fintech, and regulatory issues. The website publishes news, press releases, opinion and advertorials on various financial organizations, products and services which are commissioned from various Companies, Organizations, PR agencies, Bloggers etc. These commissioned articles are commercial in nature. This is not to be considered as financial advice and should be considered only for information purposes. It does not reflect the views or opinion of our website and is not to be considered an endorsement or a recommendation. We cannot guarantee the accuracy or applicability of any information provided with respect to your individual or personal circumstances. Please seek Professional advice from a qualified professional before making any financial decisions. We link to various third-party websites, affiliate sales networks, and to our advertising partners websites. When you view or click on certain links available on our articles, our partners may compensate us for displaying the content to you or make a purchase or fill a form. This will not incur any additional charges to you. To make things simpler for you to identity or distinguish advertised or sponsored articles or links, you may consider all articles or links hosted on our site as a commercial article placement. We will not be responsible for any loss you may suffer as a result of any omission or inaccuracy on the website.

    Home > Top Stories > THE RISE OF THE AUGMENTED CFO – DECISION-MAKING IS AS MUCH AN ART AS A SCIENCE.
    Top Stories

    THE RISE OF THE AUGMENTED CFO – DECISION-MAKING IS AS MUCH AN ART AS A SCIENCE.

    Published by Gbaf News

    Posted on May 26, 2017

    8 min read

    Last updated: January 21, 2026

    This image features the Raiffeisen Bank International logo, symbolizing the bank's resilience in Russia and Ukraine amidst geopolitical tensions. The article discusses RBI's assurance of normal business operations despite ongoing conflicts.
    Raiffeisen Bank International's logo reflecting stability in Russian and Ukrainian markets - Global Banking & Finance Review
    Why waste money on news and opinion when you can access them for free?

    Take advantage of our newsletter subscription and stay informed on the go!

    Subscribe

    By Jean-Cyril Schütterlé, ‎VP Product & Data science at Sidetrade

    CFOs and their teams have long been dedicated to supplying and analysing the data their companies need to make solid, fact-based decisions. However, finance departments have historically been constrained by basic forecasting techniques.

    The underlying data collection process is often time consuming and error-prone, and the result frequently lacks depth, scope and quality. Not only is the underlying data unsatisfactory, but its processing is suboptimal. All of these approximate figures end up being copied from spreadsheet to spreadsheet and undergo many manual transformations.

    This approach has many shortcomings:

    • Regardless of the quality of the forecasting process, if the data is not detailed, sufficient, relevant and up-to-date, the result will be inadequate.
    • Making the assumption that “all other things will remain equal” is an over-simplification. No lessons are learned from previous errors

    Digitisation now gives access to more granular and diverse data about present conditions or past situations and their outcomes.  Any data set that may help describe, explain, predict or even determine a company’s positioning can now be stored, updated and processed.

    This 360° view provides an opportunity to discover correlations between the collected data and the figures tracked by finance executives in their modelling activity. But this trend line methodology is insufficient in itself to derive valuable knowledge from data diversity.

    For the process of discovery to take place, this newly-found data trove needs to be mined with Machine Learning technology.

    To put it simply, Machine Learning is the automated search for correlations or patterns within vast amounts of data. Once a statistically significant correlation is identified with a high degree of certainty, it may be applied to new data to predict an outcome.

    Let’s take a simple example. Assume you are the CFO of a company selling goods to other businesses and you want to anticipate customer payment behaviour to prevent delays and accelerate total inbound cash flow.

    The traditional approach would be to look at past transactions and payment experiences with every significant customer and infer a probable payment date for each.

    But if you look closer at your data, you may find that your customer payment behaviours are not consistent across time, that your historical view is missing  essential explanatory information about the customer’s behaviour that may or may not be specific to their relationship with your company. You end up shooting in the dark.

    Wouldn’t your cash-in forecasts be much better if you had also correlated the actual time your customers took to pay you in the past, with detailed information about those transactions?

    In theory, you cannot be sure that this model will perform well until you have run a Machine Learning algorithm on your own data, looking for predictive rules that relate each payment behaviour to the detailed information of the corresponding transaction or you have tested the predictive power of those rules on a set of examples.

    In fact, the forecast is likely to be much more accurate than with the traditional methodology, provided that the data you fed the algorithm with were representative of your entire customer base.

    That leads us to another question: can I find all this information about my past transactions while making sure they are representative?

    Unfortunately, most of this information may not be readily available internally, either because you’ve never collected it or it is not flowing through your existing Order-to-Cash process. For instance, it is unlikely you know whether your customers pay their other suppliers late or not.

    But SaaS platforms can capture most of this information for you and Machine Learning software will then be able to discover the predictive rules and apply them to your own invoices to forecast their likely payment dates.

    But this is just a start. If inbound cash flows can be accurately deduced, so can other key metrics, such as revenue, provided the data is available. CFOs are the ultimate source of truth in an organisation. They manage skilled resources who translate facts into numbers and confer them credibility. They are therefore the best equipped to tap from as many diverse data sources as available, leveraging the power of Data Science to accurately forecast what comes next and thus gain marketing insight and competitive advantage for their company.

    Thus, with their augmented capabilities, CFOs are now poised to be the digital pilots of today’s new data-driven organisations.

    By Jean-Cyril Schütterlé, ‎VP Product & Data science at Sidetrade

    CFOs and their teams have long been dedicated to supplying and analysing the data their companies need to make solid, fact-based decisions. However, finance departments have historically been constrained by basic forecasting techniques.

    The underlying data collection process is often time consuming and error-prone, and the result frequently lacks depth, scope and quality. Not only is the underlying data unsatisfactory, but its processing is suboptimal. All of these approximate figures end up being copied from spreadsheet to spreadsheet and undergo many manual transformations.

    This approach has many shortcomings:

    • Regardless of the quality of the forecasting process, if the data is not detailed, sufficient, relevant and up-to-date, the result will be inadequate.
    • Making the assumption that “all other things will remain equal” is an over-simplification. No lessons are learned from previous errors

    Digitisation now gives access to more granular and diverse data about present conditions or past situations and their outcomes.  Any data set that may help describe, explain, predict or even determine a company’s positioning can now be stored, updated and processed.

    This 360° view provides an opportunity to discover correlations between the collected data and the figures tracked by finance executives in their modelling activity. But this trend line methodology is insufficient in itself to derive valuable knowledge from data diversity.

    For the process of discovery to take place, this newly-found data trove needs to be mined with Machine Learning technology.

    To put it simply, Machine Learning is the automated search for correlations or patterns within vast amounts of data. Once a statistically significant correlation is identified with a high degree of certainty, it may be applied to new data to predict an outcome.

    Let’s take a simple example. Assume you are the CFO of a company selling goods to other businesses and you want to anticipate customer payment behaviour to prevent delays and accelerate total inbound cash flow.

    The traditional approach would be to look at past transactions and payment experiences with every significant customer and infer a probable payment date for each.

    But if you look closer at your data, you may find that your customer payment behaviours are not consistent across time, that your historical view is missing  essential explanatory information about the customer’s behaviour that may or may not be specific to their relationship with your company. You end up shooting in the dark.

    Wouldn’t your cash-in forecasts be much better if you had also correlated the actual time your customers took to pay you in the past, with detailed information about those transactions?

    In theory, you cannot be sure that this model will perform well until you have run a Machine Learning algorithm on your own data, looking for predictive rules that relate each payment behaviour to the detailed information of the corresponding transaction or you have tested the predictive power of those rules on a set of examples.

    In fact, the forecast is likely to be much more accurate than with the traditional methodology, provided that the data you fed the algorithm with were representative of your entire customer base.

    That leads us to another question: can I find all this information about my past transactions while making sure they are representative?

    Unfortunately, most of this information may not be readily available internally, either because you’ve never collected it or it is not flowing through your existing Order-to-Cash process. For instance, it is unlikely you know whether your customers pay their other suppliers late or not.

    But SaaS platforms can capture most of this information for you and Machine Learning software will then be able to discover the predictive rules and apply them to your own invoices to forecast their likely payment dates.

    But this is just a start. If inbound cash flows can be accurately deduced, so can other key metrics, such as revenue, provided the data is available. CFOs are the ultimate source of truth in an organisation. They manage skilled resources who translate facts into numbers and confer them credibility. They are therefore the best equipped to tap from as many diverse data sources as available, leveraging the power of Data Science to accurately forecast what comes next and thus gain marketing insight and competitive advantage for their company.

    Thus, with their augmented capabilities, CFOs are now poised to be the digital pilots of today’s new data-driven organisations.

    More from Top Stories

    Explore more articles in the Top Stories category

    Image for Lessons From the Ring and the Deal Table: How Boxing Shapes Steven Nigro’s Approach to Banking and Life
    Lessons From the Ring and the Deal Table: How Boxing Shapes Steven Nigro’s Approach to Banking and Life
    Image for Joe Kiani in 2025: Capital, Conviction, and a Focused Return to Innovation
    Joe Kiani in 2025: Capital, Conviction, and a Focused Return to Innovation
    Image for Marco Robinson – CLOSE THE DEAL AND SUDDENLY GROW RICH
    Marco Robinson – CLOSE THE DEAL AND SUDDENLY GROW RICH
    Image for Digital Tracing: Turning a regulatory obligation into a commercial advantage
    Digital Tracing: Turning a regulatory obligation into a commercial advantage
    Image for Exploring the Role of Blockchain and the Bitcoin Price Today in Education
    Exploring the Role of Blockchain and the Bitcoin Price Today in Education
    Image for Inside the World’s First Collection Industry Conglomerate: PCA Global’s Platform Strategy
    Inside the World’s First Collection Industry Conglomerate: PCA Global’s Platform Strategy
    Image for Chase Buchanan Private Wealth Management Highlights Key Autumn 2025 Budget Takeaways for Expats
    Chase Buchanan Private Wealth Management Highlights Key Autumn 2025 Budget Takeaways for Expats
    Image for PayLaju Strengthens Its Position as Malaysia’s Trusted Interest-Free Sharia-Compliant Loan Provider
    PayLaju Strengthens Its Position as Malaysia’s Trusted Interest-Free Sharia-Compliant Loan Provider
    Image for A Notable Update for Employee Health Benefits:
    A Notable Update for Employee Health Benefits:
    Image for Creating Equity Between Walls: How Mohak Chauhan is Using Engineering, Finance, and Community Vision to Reengineer Affordable Housing
    Creating Equity Between Walls: How Mohak Chauhan is Using Engineering, Finance, and Community Vision to Reengineer Affordable Housing
    Image for Upcoming Book on Real Estate Investing: Harvard Grace Capital Founder Stewart Heath’s Puts Lessons in Print
    Upcoming Book on Real Estate Investing: Harvard Grace Capital Founder Stewart Heath’s Puts Lessons in Print
    Image for ELECTIVA MARKS A LANDMARK FIRST YEAR WITH MAJOR SENIOR APPOINTMENTS AND EXPANSION MILESTONES
    ELECTIVA MARKS A LANDMARK FIRST YEAR WITH MAJOR SENIOR APPOINTMENTS AND EXPANSION MILESTONES
    View All Top Stories Posts
    Previous Top Stories PostFINTECH. BORN IN EUROPE. SCALED ELSEWHERE?
    Next Top Stories PostCHELSEA FC LAUNCH WAITLIST BENEFITS FOLLOWING RECORD-BREAKING HOSPITALITY RENEWALS