Search
00
GBAF Logo
trophy
Top StoriesInterviewsBusinessFinanceBankingTechnologyInvestingTradingVideosAwardsMagazinesHeadlinesTrends

Subscribe to our newsletter

Get the latest news and updates from our team.

Global Banking and Finance Review

Global Banking and Finance Review - Subscribe to our newsletter

Company

    GBAF Logo
    • About Us
    • Profile
    • Privacy & Cookie Policy
    • Terms of Use
    • Contact Us
    • Advertising
    • Submit Post
    • Latest News
    • Research Reports
    • Press Release
    • Awards▾
      • About the Awards
      • Awards TimeTable
      • Submit Nominations
      • Testimonials
      • Media Room
      • Award Winners
      • FAQ
    • Magazines▾
      • Global Banking & Finance Review Magazine Issue 79
      • Global Banking & Finance Review Magazine Issue 78
      • Global Banking & Finance Review Magazine Issue 77
      • Global Banking & Finance Review Magazine Issue 76
      • Global Banking & Finance Review Magazine Issue 75
      • Global Banking & Finance Review Magazine Issue 73
      • Global Banking & Finance Review Magazine Issue 71
      • Global Banking & Finance Review Magazine Issue 70
      • Global Banking & Finance Review Magazine Issue 69
      • Global Banking & Finance Review Magazine Issue 66
    Top StoriesInterviewsBusinessFinanceBankingTechnologyInvestingTradingVideosAwardsMagazinesHeadlinesTrends

    Global Banking & Finance Review® is a leading financial portal and online magazine offering News, Analysis, Opinion, Reviews, Interviews & Videos from the world of Banking, Finance, Business, Trading, Technology, Investing, Brokerage, Foreign Exchange, Tax & Legal, Islamic Finance, Asset & Wealth Management.
    Copyright © 2010-2026 GBAF Publications Ltd - All Rights Reserved. | Sitemap | Tags | Developed By eCorpIT

    Editorial & Advertiser disclosure

    Global Banking and Finance Review is an online platform offering news, analysis, and opinion on the latest trends, developments, and innovations in the banking and finance industry worldwide. The platform covers a diverse range of topics, including banking, insurance, investment, wealth management, fintech, and regulatory issues. The website publishes news, press releases, opinion and advertorials on various financial organizations, products and services which are commissioned from various Companies, Organizations, PR agencies, Bloggers etc. These commissioned articles are commercial in nature. This is not to be considered as financial advice and should be considered only for information purposes. It does not reflect the views or opinion of our website and is not to be considered an endorsement or a recommendation. We cannot guarantee the accuracy or applicability of any information provided with respect to your individual or personal circumstances. Please seek Professional advice from a qualified professional before making any financial decisions. We link to various third-party websites, affiliate sales networks, and to our advertising partners websites. When you view or click on certain links available on our articles, our partners may compensate us for displaying the content to you or make a purchase or fill a form. This will not incur any additional charges to you. To make things simpler for you to identity or distinguish advertised or sponsored articles or links, you may consider all articles or links hosted on our site as a commercial article placement. We will not be responsible for any loss you may suffer as a result of any omission or inaccuracy on the website.

    Home > Top Stories > Leveraging advanced analytics for real-time fraud and money laundering detection
    Top Stories

    Leveraging advanced analytics for real-time fraud and money laundering detection

    Published by Gbaf News

    Posted on August 16, 2018

    7 min read

    Last updated: January 21, 2026

    The image illustrates the OECD's updated growth forecast for the UK economy in 2025, reflecting increased government spending and high inflation rates. This visual supports the article's analysis of Britain's economic outlook.
    UK economy growth forecast graphic highlighting 2025 acceleration - Global Banking & Finance Review
    Why waste money on news and opinion when you can access them for free?

    Take advantage of our newsletter subscription and stay informed on the go!

    Subscribe

    Tags:Computing Platformleading payment solutionmachine learning insightsmobile payment applications

    Table of Contents

    • Operationalizing Machine Learning for Finance
    • Detecting Fraud and Money Laundering with In-Memory Computing (IMC)
    • Fraud Detection in Real-time: A Financial Use Case
    • Conclusion
    • Operationalizing Machine Learning for Finance
    • Detecting Fraud and Money Laundering with In-Memory Computing (IMC)
    • Fraud Detection in Real-time: A Financial Use Case
    • Conclusion

    By Yoav Einav, VP Product @GigaSpaces

    Fraud detection is a billion-dollar problem in finance, affecting consumers and banks alike.

    Deploying and running advanced analytics on data as it’s born will help financial institutions detect and prevent money laundering and other fraudulent activities, while eliminating the need to provision new data stores for fraud detection workflows.

    The real-time insights gleaned trigger on-the-spot workflows to protect against live fraud at the time of transaction.

    Leading banks and capital markets firms have begun to leverage real-time analytics and machine learning for many initiatives; including risk management, fraud detection, compliance and consumer metrics, to gain a competitive edge and comply with regulations that are required for extreme performance on big data workflows.

    Machine learning is getting better at identifying potential cases of fraud across many different fields. It is being used to fight money laundering, and companies like PayPal are building tools that compare millions of transactions at millisecond speeds to precisely distinguish between legitimate and fraudulent transactions on the buyer and seller sides.

    Operationalizing Machine Learning for Finance

    Taking the leap from data science to operationalizing machine learning requires successful integration with business applications. No matter how clean and organized data is, or how sophisticated statistical models are – if the last mile of application integration is not possible, then financial institutes can never fully leverage the benefits of machine learning.

    For example, if a financial transaction has been identified as fraudulent, this insight can only be turned into action through this essential integration. The right organizational stakeholders need to be notified, and the relevant workflow needs to be executed. Otherwise, the fraudulent attempt will go unchecked.

    Detecting Fraud and Money Laundering with In-Memory Computing (IMC)

    Unlike traditional databases, an in-memory computing can handle real-time massive workloads and processing tasks at millisecond speeds. And smart integration with data lakes, storing multi-petabytes of data, simplifies access to historical data. This powers faster and smarter machine learning insights, providing a simpler, faster workflow.

    Fraud Detection in Real-time: A Financial Use Case

    A leading payment solution provider has leveraged GigaSpaces In-memory Computing Platform to provide tools that facilitate a secure exchange between financial organizations and offer solutions for responding instantly to evolving fraud challenges. Such customers exchange information and knowledge to obtain a single view of fraud activity across the enterprise and manage fraud on a cross-institution basis.

    Fraud challenges exist for real-time mobile payment applications as well as detecting check fraud when there are simultaneous check deposits at different banks. In order to address these, the core platform technology not only ingests 4 TB daily but also handles 1.5M events per second, with a response time of milliseconds. This gives banks and financial institutions the processing power to handle all of this insight and validate it against large datasets of both live and archived data, correlating the immediate transaction with the historical behavior of the specific user profile. They otherwise wouldn’t be able to with traditional RAM. If a faulty transaction is detected, it can be rejected instantaneously. While this might sound like it puts a burden on the user experience, it doesn’t. Transactions are completed in seconds as the actual processing and analysis takes on millisecond.  On the enterprise side, it is built for on-demand scaling and mission critical availability with proven zero down-time.

    Conclusion

    Real-time analytics and machine learning will enable companies to actively prevent transactional fraud.  Reacting after the fact is too late and has negative impact on both costs and customer experience. In-memory-computing allows banks, credit unions and larger banks alike to act in the moment, rather than getting burned in the future.

    By Yoav Einav, VP Product @GigaSpaces

    Fraud detection is a billion-dollar problem in finance, affecting consumers and banks alike.

    Deploying and running advanced analytics on data as it’s born will help financial institutions detect and prevent money laundering and other fraudulent activities, while eliminating the need to provision new data stores for fraud detection workflows.

    The real-time insights gleaned trigger on-the-spot workflows to protect against live fraud at the time of transaction.

    Leading banks and capital markets firms have begun to leverage real-time analytics and machine learning for many initiatives; including risk management, fraud detection, compliance and consumer metrics, to gain a competitive edge and comply with regulations that are required for extreme performance on big data workflows.

    Machine learning is getting better at identifying potential cases of fraud across many different fields. It is being used to fight money laundering, and companies like PayPal are building tools that compare millions of transactions at millisecond speeds to precisely distinguish between legitimate and fraudulent transactions on the buyer and seller sides.

    Operationalizing Machine Learning for Finance

    Taking the leap from data science to operationalizing machine learning requires successful integration with business applications. No matter how clean and organized data is, or how sophisticated statistical models are – if the last mile of application integration is not possible, then financial institutes can never fully leverage the benefits of machine learning.

    For example, if a financial transaction has been identified as fraudulent, this insight can only be turned into action through this essential integration. The right organizational stakeholders need to be notified, and the relevant workflow needs to be executed. Otherwise, the fraudulent attempt will go unchecked.

    Detecting Fraud and Money Laundering with In-Memory Computing (IMC)

    Unlike traditional databases, an in-memory computing can handle real-time massive workloads and processing tasks at millisecond speeds. And smart integration with data lakes, storing multi-petabytes of data, simplifies access to historical data. This powers faster and smarter machine learning insights, providing a simpler, faster workflow.

    Fraud Detection in Real-time: A Financial Use Case

    A leading payment solution provider has leveraged GigaSpaces In-memory Computing Platform to provide tools that facilitate a secure exchange between financial organizations and offer solutions for responding instantly to evolving fraud challenges. Such customers exchange information and knowledge to obtain a single view of fraud activity across the enterprise and manage fraud on a cross-institution basis.

    Fraud challenges exist for real-time mobile payment applications as well as detecting check fraud when there are simultaneous check deposits at different banks. In order to address these, the core platform technology not only ingests 4 TB daily but also handles 1.5M events per second, with a response time of milliseconds. This gives banks and financial institutions the processing power to handle all of this insight and validate it against large datasets of both live and archived data, correlating the immediate transaction with the historical behavior of the specific user profile. They otherwise wouldn’t be able to with traditional RAM. If a faulty transaction is detected, it can be rejected instantaneously. While this might sound like it puts a burden on the user experience, it doesn’t. Transactions are completed in seconds as the actual processing and analysis takes on millisecond.  On the enterprise side, it is built for on-demand scaling and mission critical availability with proven zero down-time.

    Conclusion

    Real-time analytics and machine learning will enable companies to actively prevent transactional fraud.  Reacting after the fact is too late and has negative impact on both costs and customer experience. In-memory-computing allows banks, credit unions and larger banks alike to act in the moment, rather than getting burned in the future.

    More from Top Stories

    Explore more articles in the Top Stories category

    Image for Lessons From the Ring and the Deal Table: How Boxing Shapes Steven Nigro’s Approach to Banking and Life
    Lessons From the Ring and the Deal Table: How Boxing Shapes Steven Nigro’s Approach to Banking and Life
    Image for Joe Kiani in 2025: Capital, Conviction, and a Focused Return to Innovation
    Joe Kiani in 2025: Capital, Conviction, and a Focused Return to Innovation
    Image for Marco Robinson – CLOSE THE DEAL AND SUDDENLY GROW RICH
    Marco Robinson – CLOSE THE DEAL AND SUDDENLY GROW RICH
    Image for Digital Tracing: Turning a regulatory obligation into a commercial advantage
    Digital Tracing: Turning a regulatory obligation into a commercial advantage
    Image for Exploring the Role of Blockchain and the Bitcoin Price Today in Education
    Exploring the Role of Blockchain and the Bitcoin Price Today in Education
    Image for Inside the World’s First Collection Industry Conglomerate: PCA Global’s Platform Strategy
    Inside the World’s First Collection Industry Conglomerate: PCA Global’s Platform Strategy
    Image for Chase Buchanan Private Wealth Management Highlights Key Autumn 2025 Budget Takeaways for Expats
    Chase Buchanan Private Wealth Management Highlights Key Autumn 2025 Budget Takeaways for Expats
    Image for PayLaju Strengthens Its Position as Malaysia’s Trusted Interest-Free Sharia-Compliant Loan Provider
    PayLaju Strengthens Its Position as Malaysia’s Trusted Interest-Free Sharia-Compliant Loan Provider
    Image for A Notable Update for Employee Health Benefits:
    A Notable Update for Employee Health Benefits:
    Image for Creating Equity Between Walls: How Mohak Chauhan is Using Engineering, Finance, and Community Vision to Reengineer Affordable Housing
    Creating Equity Between Walls: How Mohak Chauhan is Using Engineering, Finance, and Community Vision to Reengineer Affordable Housing
    Image for Upcoming Book on Real Estate Investing: Harvard Grace Capital Founder Stewart Heath’s Puts Lessons in Print
    Upcoming Book on Real Estate Investing: Harvard Grace Capital Founder Stewart Heath’s Puts Lessons in Print
    Image for ELECTIVA MARKS A LANDMARK FIRST YEAR WITH MAJOR SENIOR APPOINTMENTS AND EXPANSION MILESTONES
    ELECTIVA MARKS A LANDMARK FIRST YEAR WITH MAJOR SENIOR APPOINTMENTS AND EXPANSION MILESTONES
    View All Top Stories Posts
    Previous Top Stories PostOpenFin appoints Stephen Wood as Global Head of Enterprise Deployment
    Next Top Stories PostFour ways financial organisations are evolving to become more customer-centric