Search
00
GBAF Logo
trophy
Top StoriesInterviewsBusinessFinanceBankingTechnologyInvestingTradingVideosAwardsMagazinesHeadlinesTrends

Subscribe to our newsletter

Get the latest news and updates from our team.

Global Banking and Finance Review

Global Banking and Finance Review - Subscribe to our newsletter

Company

    GBAF Logo
    • About Us
    • Profile
    • Privacy & Cookie Policy
    • Terms of Use
    • Contact Us
    • Advertising
    • Submit Post
    • Latest News
    • Research Reports
    • Press Release
    • Awards▾
      • About the Awards
      • Awards TimeTable
      • Submit Nominations
      • Testimonials
      • Media Room
      • Award Winners
      • FAQ
    • Magazines▾
      • Global Banking & Finance Review Magazine Issue 79
      • Global Banking & Finance Review Magazine Issue 78
      • Global Banking & Finance Review Magazine Issue 77
      • Global Banking & Finance Review Magazine Issue 76
      • Global Banking & Finance Review Magazine Issue 75
      • Global Banking & Finance Review Magazine Issue 73
      • Global Banking & Finance Review Magazine Issue 71
      • Global Banking & Finance Review Magazine Issue 70
      • Global Banking & Finance Review Magazine Issue 69
      • Global Banking & Finance Review Magazine Issue 66
    Top StoriesInterviewsBusinessFinanceBankingTechnologyInvestingTradingVideosAwardsMagazinesHeadlinesTrends

    Global Banking & Finance Review® is a leading financial portal and online magazine offering News, Analysis, Opinion, Reviews, Interviews & Videos from the world of Banking, Finance, Business, Trading, Technology, Investing, Brokerage, Foreign Exchange, Tax & Legal, Islamic Finance, Asset & Wealth Management.
    Copyright © 2010-2026 GBAF Publications Ltd - All Rights Reserved. | Sitemap | Tags | Developed By eCorpIT

    Editorial & Advertiser disclosure

    Global Banking and Finance Review is an online platform offering news, analysis, and opinion on the latest trends, developments, and innovations in the banking and finance industry worldwide. The platform covers a diverse range of topics, including banking, insurance, investment, wealth management, fintech, and regulatory issues. The website publishes news, press releases, opinion and advertorials on various financial organizations, products and services which are commissioned from various Companies, Organizations, PR agencies, Bloggers etc. These commissioned articles are commercial in nature. This is not to be considered as financial advice and should be considered only for information purposes. It does not reflect the views or opinion of our website and is not to be considered an endorsement or a recommendation. We cannot guarantee the accuracy or applicability of any information provided with respect to your individual or personal circumstances. Please seek Professional advice from a qualified professional before making any financial decisions. We link to various third-party websites, affiliate sales networks, and to our advertising partners websites. When you view or click on certain links available on our articles, our partners may compensate us for displaying the content to you or make a purchase or fill a form. This will not incur any additional charges to you. To make things simpler for you to identity or distinguish advertised or sponsored articles or links, you may consider all articles or links hosted on our site as a commercial article placement. We will not be responsible for any loss you may suffer as a result of any omission or inaccuracy on the website.

    Home > Top Stories > FICO MACHINE LEARNING ALGORITHMS IMPROVE CARD-NOT-PRESENT FRAUD DETECTION BY 30%
    Top Stories

    FICO MACHINE LEARNING ALGORITHMS IMPROVE CARD-NOT-PRESENT FRAUD DETECTION BY 30%

    Published by Gbaf News

    Posted on October 5, 2017

    6 min read

    Last updated: January 21, 2026

    Image of Kim Leadbeater addressing the media about proposed changes to the UK's assisted dying law, emphasizing the removal of High Court judge sign-off to enhance the legislative process.
    Lawmaker Kim Leadbeater discusses UK's assisted dying law changes - Global Banking & Finance Review
    Why waste money on news and opinion when you can access them for free?

    Take advantage of our newsletter subscription and stay informed on the go!

    Subscribe

    Thousands of global banks to benefit from machine learning that more accurately detects fraud in online and mobile purchases 

    Highlights:

    • FICO is releasing new payment card fraud detection models focused on making card-not-present (CNP) transactions more convenient and secure.
    • CNP fraud is the leading form of card fraud in most countries.
    • Based on analysis of more than 4 billion transactions, the new models can significantly reduce CNP fraud losses without increasing false positive rates.
    • The new models have been quantifiably proven to double the detection of fraudulent, high-value CNP transactions on the first attempted transaction.
    • The models will be released to FICO® Falcon® Platform customers at no additional charge. The FICO Falcon Platform protects more than 2.6 billion payment cards worldwide.

    Silicon Valley analytic software firm FICO today announced that its new Falcon consortium models for payment card fraud detection include machine learning innovations that improve card-not-present (CNP) fraud detection by 30% without increasing the false positive rate, a standard metric for fraud model performance. These new Falcon consortium models for both credit and debit cards will be available first for FICO® Falcon® Platform customers in the UK and Europe this autumn, and then to customers in other markets worldwide.

    CNP fraud, which includes online card and e-wallet transactions, is the most prevalent form of card fraud in most countries. FICO and Euromonitor International found that CNP fraud represented some 70 percent of card fraud in 19 European countries, and rates are similarly high in many other parts of the world.

    “Consumer convenience is driving rapid growth in online transactions. As a result, criminals are looking to use this convenience to their advantage as chip cards and other security features have made physical card fraud more difficult,” said TJ Horan, vice president for fraud solutions at FICO. “Our goal is to help card issuers promote a positive consumer experience while protecting them from financial harm. These CNP machine learning innovations are important tools to help issuers spot fraud faster, and take on even greater importance in the light of recent data breaches, which will lead to more fraud attempts.”

    The Falcon consortium — a pool of anonymised transaction details collected from 9,000 financial institutions worldwide — allows FICO data scientists to test and prove the performance of new models prior to release. Developed based on analysis of 4 billion transactions, these new CNP machine learning models have demonstrated the ability to:

    • Cut CNP fraud losses by 30% without increasing false positive rates.
    • Reduce CNP transaction review rates without increasing fraud risk.
    • Double the detection of fraudulent, high-value CNP transactions on the first attempted transaction.

    “Machine learning algorithms are greedy — they gobble up data,” said Dr. Scott Zoldi, FICO’s chief analytics officer. “Fortunately, our unique Falcon consortium has rich, anonymised transaction data on billions of payment cards and merchants, allowing us to build and validate algorithms that represent deep behavioural patterns. In production, these learned highly predictive behavioural variables and profiles of cardholders and merchants are updated with each transaction, in real time, in order to identify and adapt to behavioural outliers.”

    For 25 years, FICO has applied AI-based behavioural analytics to detect fraudulent transactions across billions of payment transactions, with sub-second response times. The FICO® Falcon® Platform protects more than 2.6 billion payment cards worldwide. The company today holds more than 90 patents related to artificial intelligence and machine learning in fraud detection.

    Thousands of global banks to benefit from machine learning that more accurately detects fraud in online and mobile purchases 

    Highlights:

    • FICO is releasing new payment card fraud detection models focused on making card-not-present (CNP) transactions more convenient and secure.
    • CNP fraud is the leading form of card fraud in most countries.
    • Based on analysis of more than 4 billion transactions, the new models can significantly reduce CNP fraud losses without increasing false positive rates.
    • The new models have been quantifiably proven to double the detection of fraudulent, high-value CNP transactions on the first attempted transaction.
    • The models will be released to FICO® Falcon® Platform customers at no additional charge. The FICO Falcon Platform protects more than 2.6 billion payment cards worldwide.

    Silicon Valley analytic software firm FICO today announced that its new Falcon consortium models for payment card fraud detection include machine learning innovations that improve card-not-present (CNP) fraud detection by 30% without increasing the false positive rate, a standard metric for fraud model performance. These new Falcon consortium models for both credit and debit cards will be available first for FICO® Falcon® Platform customers in the UK and Europe this autumn, and then to customers in other markets worldwide.

    CNP fraud, which includes online card and e-wallet transactions, is the most prevalent form of card fraud in most countries. FICO and Euromonitor International found that CNP fraud represented some 70 percent of card fraud in 19 European countries, and rates are similarly high in many other parts of the world.

    “Consumer convenience is driving rapid growth in online transactions. As a result, criminals are looking to use this convenience to their advantage as chip cards and other security features have made physical card fraud more difficult,” said TJ Horan, vice president for fraud solutions at FICO. “Our goal is to help card issuers promote a positive consumer experience while protecting them from financial harm. These CNP machine learning innovations are important tools to help issuers spot fraud faster, and take on even greater importance in the light of recent data breaches, which will lead to more fraud attempts.”

    The Falcon consortium — a pool of anonymised transaction details collected from 9,000 financial institutions worldwide — allows FICO data scientists to test and prove the performance of new models prior to release. Developed based on analysis of 4 billion transactions, these new CNP machine learning models have demonstrated the ability to:

    • Cut CNP fraud losses by 30% without increasing false positive rates.
    • Reduce CNP transaction review rates without increasing fraud risk.
    • Double the detection of fraudulent, high-value CNP transactions on the first attempted transaction.

    “Machine learning algorithms are greedy — they gobble up data,” said Dr. Scott Zoldi, FICO’s chief analytics officer. “Fortunately, our unique Falcon consortium has rich, anonymised transaction data on billions of payment cards and merchants, allowing us to build and validate algorithms that represent deep behavioural patterns. In production, these learned highly predictive behavioural variables and profiles of cardholders and merchants are updated with each transaction, in real time, in order to identify and adapt to behavioural outliers.”

    For 25 years, FICO has applied AI-based behavioural analytics to detect fraudulent transactions across billions of payment transactions, with sub-second response times. The FICO® Falcon® Platform protects more than 2.6 billion payment cards worldwide. The company today holds more than 90 patents related to artificial intelligence and machine learning in fraud detection.

    More from Top Stories

    Explore more articles in the Top Stories category

    Image for Lessons From the Ring and the Deal Table: How Boxing Shapes Steven Nigro’s Approach to Banking and Life
    Lessons From the Ring and the Deal Table: How Boxing Shapes Steven Nigro’s Approach to Banking and Life
    Image for Joe Kiani in 2025: Capital, Conviction, and a Focused Return to Innovation
    Joe Kiani in 2025: Capital, Conviction, and a Focused Return to Innovation
    Image for Marco Robinson – CLOSE THE DEAL AND SUDDENLY GROW RICH
    Marco Robinson – CLOSE THE DEAL AND SUDDENLY GROW RICH
    Image for Digital Tracing: Turning a regulatory obligation into a commercial advantage
    Digital Tracing: Turning a regulatory obligation into a commercial advantage
    Image for Exploring the Role of Blockchain and the Bitcoin Price Today in Education
    Exploring the Role of Blockchain and the Bitcoin Price Today in Education
    Image for Inside the World’s First Collection Industry Conglomerate: PCA Global’s Platform Strategy
    Inside the World’s First Collection Industry Conglomerate: PCA Global’s Platform Strategy
    Image for Chase Buchanan Private Wealth Management Highlights Key Autumn 2025 Budget Takeaways for Expats
    Chase Buchanan Private Wealth Management Highlights Key Autumn 2025 Budget Takeaways for Expats
    Image for PayLaju Strengthens Its Position as Malaysia’s Trusted Interest-Free Sharia-Compliant Loan Provider
    PayLaju Strengthens Its Position as Malaysia’s Trusted Interest-Free Sharia-Compliant Loan Provider
    Image for A Notable Update for Employee Health Benefits:
    A Notable Update for Employee Health Benefits:
    Image for Creating Equity Between Walls: How Mohak Chauhan is Using Engineering, Finance, and Community Vision to Reengineer Affordable Housing
    Creating Equity Between Walls: How Mohak Chauhan is Using Engineering, Finance, and Community Vision to Reengineer Affordable Housing
    Image for Upcoming Book on Real Estate Investing: Harvard Grace Capital Founder Stewart Heath’s Puts Lessons in Print
    Upcoming Book on Real Estate Investing: Harvard Grace Capital Founder Stewart Heath’s Puts Lessons in Print
    Image for ELECTIVA MARKS A LANDMARK FIRST YEAR WITH MAJOR SENIOR APPOINTMENTS AND EXPANSION MILESTONES
    ELECTIVA MARKS A LANDMARK FIRST YEAR WITH MAJOR SENIOR APPOINTMENTS AND EXPANSION MILESTONES
    View All Top Stories Posts
    Previous Top Stories PostMERCIA TECHNOLOGIES PLC’S FUND MANAGEMENT SUBSIDIARIES REBRANDING AS MERCIA FUND MANAGERS
    Next Top Stories PostLEGAL & GENERAL RESEARCH FINDS THAT BUILDING SOCIETY CUSTOMERS WANT BOTH BRANCH BANKING AND GREAT ONLINE SERVICES.