Editorial & Advertiser Disclosure Global Banking And Finance Review is an independent publisher which offers News, information, Analysis, Opinion, Press Releases, Reviews, Research reports covering various economies, industries, products, services and companies. The content available on globalbankingandfinance.com is sourced by a mixture of different methods which is not limited to content produced and supplied by various staff writers, journalists, freelancers, individuals, organizations, companies, PR agencies Sponsored Posts etc. The information available on this website is purely for educational and informational purposes only. We cannot guarantee the accuracy or applicability of any of the information provided at globalbankingandfinance.com with respect to your individual or personal circumstances. Please seek professional advice from a qualified professional before making any financial decisions. Globalbankingandfinance.com also links to various third party websites and we cannot guarantee the accuracy or applicability of the information provided by third party websites. Links from various articles on our site to third party websites are a mixture of non-sponsored links and sponsored links. Only a very small fraction of the links which point to external websites are affiliate links. Some of the links which you may click on our website may link to various products and services from our partners who may compensate us if you buy a service or product or fill a form or install an app. This will not incur additional cost to you. A very few articles on our website are sponsored posts or paid advertorials. These are marked as sponsored posts at the bottom of each post. For avoidance of any doubts and to make it easier for you to differentiate sponsored or non-sponsored articles or links, you may consider all articles on our site or all links to external websites as sponsored . Please note that some of the services or products which we talk about carry a high level of risk and may not be suitable for everyone. These may be complex services or products and we request the readers to consider this purely from an educational standpoint. The information provided on this website is general in nature. Global Banking & Finance Review expressly disclaims any liability without any limitation which may arise directly or indirectly from the use of such information.


Banks can deploy machine learning models in high-performance real-time production environments

More powerful analytics, vastly improving speed-to-market, monetising new forms of data

Earnix Ltd., a leading provider of predictive analytics solutions for the banking industry, today announced the introduction of its Integrated Machine Learning technology, as an enhancement to the existing banking software suite. This new capability is designed for demanding, high-performance real-time enterprise production systems, and will deliver a new level of market responsiveness and analytical sophistication to banks. Several Earnix clients have been using an early version of the technology and have seen significant improvements in their results.

The Analytics Arms Race

Analytics has become an arms race, as banks around the globe seek to become more data-driven by operationalising real-time analytics and monetising new forms of data such as the Internet of Things (IoT). The addition of Integrated Machine Learning to the Earnix software suite enables users to excel in this environment, producing better and more accurate insights at speeds that only machine learning algorithms can produce.

Commenting on the new release, Earnix CEO Udi Ziv said: “We are providing financial institutions with the tools needed to more effectively compete in today’s data-driven real-time environment. Our new Integrated Machine Learning technology enables clients to rapidly move machine learning from the data scientist’s lab into operational processes. Clients who have been using the software are seeing measurable bottom line results.”

Designed for an Industry in Transition

Earnix’s new Integrated Machine Learning technology is designed for banks at all levels of analytical maturity, who want real-time market responsiveness. From companies that are novices and need assistance in creating machine learning models, to expert users who can import proprietary algorithms that they have built, Earnix empowers all banks to operationalise machine learning with a new level of predictive insights.

Evolution-Revolution: Enhancing Best Practices with New Technology

Integrated Machine Learning technology is able to combine traditional statistical modeling (for example General Linear Modeling or GLM), with cutting-edge machine learning techniques such as Random Forest and Gradient Boosting Machine. These hybrid models enhance trusted analytics that currently run business with the added power and capabilities of machine learning.