Search
00
GBAF Logo
trophy
Top StoriesInterviewsBusinessFinanceBankingTechnologyInvestingTradingVideosAwardsMagazinesHeadlinesTrends

Subscribe to our newsletter

Get the latest news and updates from our team.

Global Banking and Finance Review

Global Banking and Finance Review - Subscribe to our newsletter

Company

    GBAF Logo
    • About Us
    • Profile
    • Privacy & Cookie Policy
    • Terms of Use
    • Contact Us
    • Advertising
    • Submit Post
    • Latest News
    • Research Reports
    • Press Release
    • Awards▾
      • About the Awards
      • Awards TimeTable
      • Submit Nominations
      • Testimonials
      • Media Room
      • Award Winners
      • FAQ
    • Magazines▾
      • Global Banking & Finance Review Magazine Issue 79
      • Global Banking & Finance Review Magazine Issue 78
      • Global Banking & Finance Review Magazine Issue 77
      • Global Banking & Finance Review Magazine Issue 76
      • Global Banking & Finance Review Magazine Issue 75
      • Global Banking & Finance Review Magazine Issue 73
      • Global Banking & Finance Review Magazine Issue 71
      • Global Banking & Finance Review Magazine Issue 70
      • Global Banking & Finance Review Magazine Issue 69
      • Global Banking & Finance Review Magazine Issue 66
    Top StoriesInterviewsBusinessFinanceBankingTechnologyInvestingTradingVideosAwardsMagazinesHeadlinesTrends

    Global Banking & Finance Review® is a leading financial portal and online magazine offering News, Analysis, Opinion, Reviews, Interviews & Videos from the world of Banking, Finance, Business, Trading, Technology, Investing, Brokerage, Foreign Exchange, Tax & Legal, Islamic Finance, Asset & Wealth Management.
    Copyright © 2010-2026 GBAF Publications Ltd - All Rights Reserved. | Sitemap | Tags | Developed By eCorpIT

    Editorial & Advertiser disclosure

    Global Banking and Finance Review is an online platform offering news, analysis, and opinion on the latest trends, developments, and innovations in the banking and finance industry worldwide. The platform covers a diverse range of topics, including banking, insurance, investment, wealth management, fintech, and regulatory issues. The website publishes news, press releases, opinion and advertorials on various financial organizations, products and services which are commissioned from various Companies, Organizations, PR agencies, Bloggers etc. These commissioned articles are commercial in nature. This is not to be considered as financial advice and should be considered only for information purposes. It does not reflect the views or opinion of our website and is not to be considered an endorsement or a recommendation. We cannot guarantee the accuracy or applicability of any information provided with respect to your individual or personal circumstances. Please seek Professional advice from a qualified professional before making any financial decisions. We link to various third-party websites, affiliate sales networks, and to our advertising partners websites. When you view or click on certain links available on our articles, our partners may compensate us for displaying the content to you or make a purchase or fill a form. This will not incur any additional charges to you. To make things simpler for you to identity or distinguish advertised or sponsored articles or links, you may consider all articles or links hosted on our site as a commercial article placement. We will not be responsible for any loss you may suffer as a result of any omission or inaccuracy on the website.

    Home > Technology > Large Language Models are the basis of the new generation of AI engines, but private foundation models are the future
    Technology

    Large Language Models are the basis of the new generation of AI engines, but private foundation models are the future

    Published by Jessica Weisman-Pitts

    Posted on June 2, 2023

    4 min read

    Last updated: February 1, 2026

    This image illustrates the rapid advancement of AI language models, as discussed in the article. It highlights the transformative impact of private foundation models on the banking and finance sectors.
    An abstract representation of AI growth and language models - Global Banking & Finance Review
    Why waste money on news and opinion when you can access them for free?

    Take advantage of our newsletter subscription and stay informed on the go!

    Subscribe

    Tags:innovationtechnologyfinancial servicesArtificial IntelligenceData management

    Quick Summary

    How foundation models can unlock unstructured data for enterprise

    Large Language Models are the basis of the new generation of AI engines, but private foundation models are the future

    How foundation models can unlock unstructured data for enterprise

    By Marshall Choy, SVP, SambaNova Systems

    A Fourth Industrial Revolution

    The start of 2023 has seen generative AI explode into the mainstream, with ChatGPT introducing the transformative power of this technology to a broad consumer audience. Big tech firms are taking steps to turn theory into practice, lifting AI projects out of the sandbox and into the real world. Since ChatGPT was released, a wider audience has been exposed to the emergent capabilities of Large Language Models (LLMs) to achieve results beyond the scope of their initial creation. The floodgates are creaking open, and the fourth industrial revolution is beginning.

    Revolutions don’t, however, happen overnight. Behind this upsurge in interest, AI innovators have been methodically fine-tuning AI models for their breakthrough moment. Now that that moment has arrived, the appetite for AI – from both consumer and enterprise – has skyrocketed. Industrial revolutions, however, don’t take place in the consumer realm. Industry is the engine that fuels societal change, and it is through industry applications that AI will bring the most significant societal benefit.

    ChatGPT is just the tip of the iceberg for generative AI capabilities, and enterprise-focused AI vendors are leading the way in bringing additional capabilities to market. Enterprise-ready AI is not the next step following ChatGPT; it’s the very foundation on which future success will be built and has proven its reliability and readiness to supercharge businesses.

    Enterprises leading the way

    Enterprise continues to lead the way in implementing AI to significantly improve customer services and operational efficiency. For example, the banking industry is already adopting advanced language models to consolidate AI sprawl into high-performance foundation models. In addition, banks have recognised that they’ve been sitting on troves of unstructured data such as emails, chat logs, voice call recordings and financial reports. As a result, we’re increasingly seeing more and more banks put AI foundation models in place to gain trapped insights from this data.

    Many businesses have employed conversational AI in forms like conversational AI chatbots for many years already. However, in 2023, we have seen AI leap into the domain of genuine ROI for businesses, and the potential use cases for enterprise expand beyond what was previously thought possible.

    To get the most out of AI deployment, businesses need a considered long-term strategy and the expertise and knowledge base to fine-tune their AI model. Traditionally, new technologies are judged on their ability to deliver short-term ROI. However, with the current gold rush on generative AI, this can lead to the confusion of multiple models being adopted for different use cases simultaneously, limiting scalability and, ultimately, restricting their effectiveness.

    Foundation models are the basis of generative AI and enterprise success

    LLMs form the basis of a new generation of revolutionary AI engines. With ChatGPT, they’re showing their ability to comprehend and generate coherent language. LLMs are already being implemented across industries, generating insights from vast swathes of unstructured data. However, foundation models, the basis of generative AI and LLMs, are where the real value for enterprise can be found.

    LLMs, like the GPT-based model that powers ChatGPT learn from enormous quantities of data. Unfortunately, this can lead to inaccuracies in disseminating flawed data, requiring more privacy and security for enterprise applications. Recently, we’ve seen organisations like Goldman Sachs instruct their employees to stop using the public ChatGPT model due to security concerns, and inaccuracy is simply not an option for enterprises looking to generative AI to optimise their operations.

    Tailored, enterprise-ready generative AI models can avoid these problems of inaccuracy when finetuned with the firm’s own data. Businesses can reduce their tech sprawl by centralising functionality into a solitary model by utilising foundation models. Private foundation models with a business’s own data can enable companies to retain control over how that data is stored and used. Control over data is retained, and the best infrastructure for achieving strategic objectives can be utilised, both of which are top concerns for enterprises.

    It’s an inspiring time to be at the forefront of generative AI as the AI gold rush kicks off in earnest. However, bringing these groundbreaking capabilities to enterprise and turbocharging business efficiency is the most exciting.

    Frequently Asked Questions about Large Language Models are the basis of the new generation of AI engines, but private foundation models are the future

    1What is artificial intelligence?

    Artificial intelligence (AI) refers to the simulation of human intelligence in machines programmed to think and learn. It encompasses various technologies, including machine learning and natural language processing.

    2What are foundation models?

    Foundation models are large-scale AI models trained on vast amounts of data. They serve as a base for developing specialized applications, particularly in understanding and generating human language.

    3What is unstructured data?

    Unstructured data refers to information that does not have a predefined data model or organization. Examples include emails, social media posts, and multimedia content, which can be challenging to analyze.

    4What is generative AI?

    Generative AI is a type of artificial intelligence that can create new content, such as text, images, or music, based on the patterns it has learned from existing data.

    5What is customer service automation?

    Customer service automation involves using technology, such as chatbots and AI, to handle customer inquiries and support tasks without human intervention, improving efficiency and response times.

    More from Technology

    Explore more articles in the Technology category

    Image for BLOXX Launches ĀRIKI BLOXX at Web Summit Qatar
    BLOXX Launches ĀRIKI BLOXX at Web Summit Qatar
    Image for Engineering Trust in the Age of Data: A Blueprint for Global Resilience
    Engineering Trust in the Age of Data: A Blueprint for Global Resilience
    Image for Over half of organisations predict their OT environments will be targeted by cyber attacks
    Over half of organisations predict their OT environments will be targeted by cyber attacks
    Image for Engineering Financial Innovation in Renewable Energy and Climate Technology
    Engineering Financial Innovation in Renewable Energy and Climate Technology
    Image for Industry 4.0 in 2025: Trends Shaping the New Industrial Reality
    Industry 4.0 in 2025: Trends Shaping the New Industrial Reality
    Image for Engineering Tomorrow’s Cities: On a Mission to Build Smarter, Safer, and Greener Mobility
    Engineering Tomorrow’s Cities: On a Mission to Build Smarter, Safer, and Greener Mobility
    Image for In Conversation with Faiz Khan: Architecting Enterprise Solutions at Scale
    In Conversation with Faiz Khan: Architecting Enterprise Solutions at Scale
    Image for Ballerine Launches Trusted Agentic Commerce Governance Platform
    Ballerine Launches Trusted Agentic Commerce Governance Platform
    Image for Maximising Corporate Visibility in a Digitally Driven Investment Landscape
    Maximising Corporate Visibility in a Digitally Driven Investment Landscape
    Image for The Digital Transformation of Small Business Lending: How Technology is Reshaping Credit Access
    The Digital Transformation of Small Business Lending: How Technology is Reshaping Credit Access
    Image for Navigating Data and AI Challenges in Payments: Expert Analysis by Himanshu Shah
    Navigating Data and AI Challenges in Payments: Expert Analysis by Himanshu Shah
    Image for Unified Namespace: A Practical 5-Step Approach to Scalable Data Architecture in Manufacturing
    Unified Namespace: A Practical 5-Step Approach to Scalable Data Architecture in Manufacturing
    View All Technology Posts
    Previous Technology PostChatGPT and the Future of Banking: How AI Is Revolutionizing Financial Services
    Next Technology PostTechnology driven disruptions in the financial services industry