Search
00
GBAF Logo
trophy
Top StoriesInterviewsBusinessFinanceBankingTechnologyInvestingTradingVideosAwardsMagazinesHeadlinesTrends

Subscribe to our newsletter

Get the latest news and updates from our team.

Global Banking & Finance Review®

Global Banking & Finance Review® - Subscribe to our newsletter

Company

    GBAF Logo
    • About Us
    • Profile
    • Privacy & Cookie Policy
    • Terms of Use
    • Contact Us
    • Advertising
    • Submit Post
    • Latest News
    • Research Reports
    • Press Release
    • Awards▾
      • About the Awards
      • Awards TimeTable
      • Submit Nominations
      • Testimonials
      • Media Room
      • Award Winners
      • FAQ
    • Magazines▾
      • Global Banking & Finance Review Magazine Issue 79
      • Global Banking & Finance Review Magazine Issue 78
      • Global Banking & Finance Review Magazine Issue 77
      • Global Banking & Finance Review Magazine Issue 76
      • Global Banking & Finance Review Magazine Issue 75
      • Global Banking & Finance Review Magazine Issue 73
      • Global Banking & Finance Review Magazine Issue 71
      • Global Banking & Finance Review Magazine Issue 70
      • Global Banking & Finance Review Magazine Issue 69
      • Global Banking & Finance Review Magazine Issue 66
    Top StoriesInterviewsBusinessFinanceBankingTechnologyInvestingTradingVideosAwardsMagazinesHeadlinesTrends

    Global Banking & Finance Review® is a leading financial portal and online magazine offering News, Analysis, Opinion, Reviews, Interviews & Videos from the world of Banking, Finance, Business, Trading, Technology, Investing, Brokerage, Foreign Exchange, Tax & Legal, Islamic Finance, Asset & Wealth Management.
    Copyright © 2010-2026 GBAF Publications Ltd - All Rights Reserved. | Sitemap | Tags | Developed By eCorpIT

    Editorial & Advertiser disclosure

    Global Banking & Finance Review® is an online platform offering news, analysis, and opinion on the latest trends, developments, and innovations in the banking and finance industry worldwide. The platform covers a diverse range of topics, including banking, insurance, investment, wealth management, fintech, and regulatory issues. The website publishes news, press releases, opinion and advertorials on various financial organizations, products and services which are commissioned from various Companies, Organizations, PR agencies, Bloggers etc. These commissioned articles are commercial in nature. This is not to be considered as financial advice and should be considered only for information purposes. It does not reflect the views or opinion of our website and is not to be considered an endorsement or a recommendation. We cannot guarantee the accuracy or applicability of any information provided with respect to your individual or personal circumstances. Please seek Professional advice from a qualified professional before making any financial decisions. We link to various third-party websites, affiliate sales networks, and to our advertising partners websites. When you view or click on certain links available on our articles, our partners may compensate us for displaying the content to you or make a purchase or fill a form. This will not incur any additional charges to you. To make things simpler for you to identity or distinguish advertised or sponsored articles or links, you may consider all articles or links hosted on our site as a commercial article placement. We will not be responsible for any loss you may suffer as a result of any omission or inaccuracy on the website.

    Home > Technology > How to drive effective AI adoption in investment management firms
    Technology

    How to drive effective AI adoption in investment management firms

    Published by linker 5

    Posted on December 1, 2020

    6 min read

    Last updated: January 21, 2026

    An illustration depicting AI integration in investment management, showcasing its role in decision-making and efficiency improvements, relevant to driving AI adoption in finance.
    AI technology transforming investment management firms performance - Global Banking & Finance Review
    Why waste money on news and opinion when you can access them for free?

    Take advantage of our newsletter subscription and stay informed on the go!

    Subscribe

    By Chandini Jain, CEO of Auquan

    Artificial intelligence (AI) has the potential to augment the work of investment management firms to unprecedented levels, powering decision-making, driving efficiencies, and ultimately improving performance. In fact, the market for AI in asset management is expected to grow to an astounding US$13.43 billion by 2027, expanding at a CAGR of 37.1% between 2020 and 2027. Innovative firms are applying AI across the industry value chain and transforming the ways in which they use the ever-expanding amounts of data that are available to them.

    However, that’s not to say that there aren’t challenges and obstacles involved in leveraging the technology. AI adoption is not a ‘magic bullet’ that can solve inefficiencies without the right set-up, nor should it be treated as a simple ‘add-on’ that portfolio managers (PMs) can tap into when they see fit. AI implementation in an investment management firm requires a number of prerequisites in order to have maximum impact. But first, let’s take a look at exactly how AI can boost the performance of investment management firms.

    How AI adds value

    Implementing data analytics into the investment management value chain holds a number of benefits. For example, when it comes to front office operations, AI can supplement investment decisions by drawing insights from alternative sources of data such as satellite imagery or social media, while also automating the analysis of large datasets. Data science teams working within investment management can build simulations to allow PMs to predict the performance of new investment ideas. They can also use AI for trading – to optimize trade execution and automate trading decisions.

    One example of using AI to power alpha generation comes from Man Group, which saw a five times increase in assets between 2014 and 2018, and whose funds that incorporate AI total more than US$12 billion. Front office operations are arguably the business area where AI holds the most potential.

    When it comes to distribution and marketing, AI can improve prospect and sales targeting using segmentation, predict and reduce attrition, support personalization, and help develop pricing algorithms. Data analytics can also be implemented into the areas of operations, tech, and support to automate processes, improve talent targeting, predict team member performance, and strengthen compliance, amongst other uses.

    Going beyond simply reducing costs and driving efficiencies, AI is providing new opportunities for investment management firms to transform how they use data to operate and inform decisions. But despite all of this, adoption levels are still relatively low: A 2019 survey by the CFA Institute found that only 10% of PMs responding had used machine learning (ML) techniques during the year prior. Furthermore, a 2019 report by BCG found that less than 30% of asset management firms are actively leveraging data analytics. Evidently, launching an AI project is not an overnight process – nor is it one that guarantees success without the right prerequisites in place.

    Here’s how investment management firms can set themselves up for success and ensure readiness for AI implementation.

    Embed a data culture 

    Before steaming ahead with any AI project, investment management firms need to ensure that the entire organization appreciates the value of data-driven decision making. A firm may have already hired a data science team or gained access to alternative data sets, but if it doesn’t have a culture of systematic decision making that permeates across the organization, the success of any AI project will be limited.

    How can firms ensure that this is the case?

    Ultimately, building data-driven must start at the top: the CEO, CIO, and all other executives must lead by example and evidence of their own commitment to data-based decisions. If leaders want their teams to leverage data at all points of decision-making, they must make the data accessible for non-technical employees and provide training on how to use any relevant tools. Teams must feel comfortable with the why of data analytics solutions, so management must make them explainable while ensuring they are aware of the capabilities and limitations of AI. And finally, the data science team must avoid working in a silo, away from the other business functions of the firm.

    Reconfigure the team structure

    The core investment process must be re-thought, from the ground up. Data science teams must be driven by a business need which is provided by the PM, and then the two must work together to co-develop the right solution.

    In addition to having a centralized data science team, the firm should have decentralized data scientists that sit within the business unit. The central team should focus primarily on data acquisition, cleaning, and ensuring reliability. The rest of the work should be done by data scientists on the PMs team – this will ensure the work is in-line with the business needs and will actually be used by the PM. With the clean, reliable data coming from the data acquisition team, the data scientists can rapidly prototype ideas for the PM.

    Invest in the right software

    Too many investment management firms attempt to build all of their AI software in-house. While the software that’s required for core operations and stems from core finance expertise should be developed internally, this does not apply to all other solutions being used.

    For example, data analysis and automation tools that leverage ML domains such as language processing, big data processing, or image processing should not be built in-house. Constructing these systems internally is expensive, time-consuming, and means hiring for skills that would otherwise not be required within the firm. Not to mention, such systems would need a large and active development force to continuously maintain them.

    That’s why it’s advisable for firms to find a third-party vendor who can take care of building the feature set that’s required, update the software with its latest version, and scale according to needs. This vendor will also take measures to ensure that the firm’s standards are consistent with its peers, and importantly, keep the system stable and secure. By integrating with a third party vendor, data science teams can focus on the core business objectives and maximize the use of overall resources.

    While AI offers countless opportunities for investment management firms to augment and power decision-making and is already setting apart the top-performing firms from those that lag behind in adoption. With so much potential to enhance portfolio performance, AI adoption should be viewed as non-negotiable for forward-looking and innovative firms. It is paramount, however, that these firms embed a data-driven approach across all teams – not just PMs – and provide the structures and tools necessary for results to flourish.

    More from Technology

    Explore more articles in the Technology category

    Image for Debtist: Digital Debt Collection for Modern Businesses
    Debtist: Digital Debt Collection for Modern Businesses
    Image for Infosecurity Europe launches new Cyber Startup Programme to champion the next generation of cybersecurity innovators
    Infosecurity Europe launches new Cyber Startup Programme to champion the next generation of cybersecurity innovators
    Image for BLOXX Launches ĀRIKI BLOXX at Web Summit Qatar
    BLOXX Launches ĀRIKI BLOXX at Web Summit Qatar
    Image for Engineering Trust in the Age of Data: A Blueprint for Global Resilience
    Engineering Trust in the Age of Data: A Blueprint for Global Resilience
    Image for Over half of organisations predict their OT environments will be targeted by cyber attacks
    Over half of organisations predict their OT environments will be targeted by cyber attacks
    Image for Engineering Financial Innovation in Renewable Energy and Climate Technology
    Engineering Financial Innovation in Renewable Energy and Climate Technology
    Image for Industry 4.0 in 2025: Trends Shaping the New Industrial Reality
    Industry 4.0 in 2025: Trends Shaping the New Industrial Reality
    Image for Engineering Tomorrow’s Cities: On a Mission to Build Smarter, Safer, and Greener Mobility
    Engineering Tomorrow’s Cities: On a Mission to Build Smarter, Safer, and Greener Mobility
    Image for In Conversation with Faiz Khan: Architecting Enterprise Solutions at Scale
    In Conversation with Faiz Khan: Architecting Enterprise Solutions at Scale
    Image for Ballerine Launches Trusted Agentic Commerce Governance Platform
    Ballerine Launches Trusted Agentic Commerce Governance Platform
    Image for Maximising Corporate Visibility in a Digitally Driven Investment Landscape
    Maximising Corporate Visibility in a Digitally Driven Investment Landscape
    Image for The Digital Transformation of Small Business Lending: How Technology is Reshaping Credit Access
    The Digital Transformation of Small Business Lending: How Technology is Reshaping Credit Access
    View All Technology Posts
    Previous Technology PostBots Are People Too: Robotic Process Automation in Finance
    Next Technology PostDemocratising today’s business software with integrated cloud suites