Search
00
GBAF Logo
trophy
Top StoriesInterviewsBusinessFinanceBankingTechnologyInvestingTradingVideosAwardsMagazinesHeadlinesTrends

Subscribe to our newsletter

Get the latest news and updates from our team.

Global Banking and Finance Review

Global Banking & Finance Review

Company

    GBAF Logo
    • About Us
    • Profile
    • Privacy & Cookie Policy
    • Terms of Use
    • Contact Us
    • Advertising
    • Submit Post
    • Latest News
    • Research Reports
    • Press Release
    • Awards▾
      • About the Awards
      • Awards TimeTable
      • Submit Nominations
      • Testimonials
      • Media Room
      • Award Winners
      • FAQ
    • Magazines▾
      • Global Banking & Finance Review Magazine Issue 79
      • Global Banking & Finance Review Magazine Issue 78
      • Global Banking & Finance Review Magazine Issue 77
      • Global Banking & Finance Review Magazine Issue 76
      • Global Banking & Finance Review Magazine Issue 75
      • Global Banking & Finance Review Magazine Issue 73
      • Global Banking & Finance Review Magazine Issue 71
      • Global Banking & Finance Review Magazine Issue 70
      • Global Banking & Finance Review Magazine Issue 69
      • Global Banking & Finance Review Magazine Issue 66
    Top StoriesInterviewsBusinessFinanceBankingTechnologyInvestingTradingVideosAwardsMagazinesHeadlinesTrends

    Global Banking & Finance Review® is a leading financial portal and online magazine offering News, Analysis, Opinion, Reviews, Interviews & Videos from the world of Banking, Finance, Business, Trading, Technology, Investing, Brokerage, Foreign Exchange, Tax & Legal, Islamic Finance, Asset & Wealth Management.
    Copyright © 2010-2025 GBAF Publications Ltd - All Rights Reserved.

    ;
    Editorial & Advertiser disclosure

    Global Banking and Finance Review is an online platform offering news, analysis, and opinion on the latest trends, developments, and innovations in the banking and finance industry worldwide. The platform covers a diverse range of topics, including banking, insurance, investment, wealth management, fintech, and regulatory issues. The website publishes news, press releases, opinion and advertorials on various financial organizations, products and services which are commissioned from various Companies, Organizations, PR agencies, Bloggers etc. These commissioned articles are commercial in nature. This is not to be considered as financial advice and should be considered only for information purposes. It does not reflect the views or opinion of our website and is not to be considered an endorsement or a recommendation. We cannot guarantee the accuracy or applicability of any information provided with respect to your individual or personal circumstances. Please seek Professional advice from a qualified professional before making any financial decisions. We link to various third-party websites, affiliate sales networks, and to our advertising partners websites. When you view or click on certain links available on our articles, our partners may compensate us for displaying the content to you or make a purchase or fill a form. This will not incur any additional charges to you. To make things simpler for you to identity or distinguish advertised or sponsored articles or links, you may consider all articles or links hosted on our site as a commercial article placement. We will not be responsible for any loss you may suffer as a result of any omission or inaccuracy on the website.

    Home > Technology > How AI and ML are changing insurance for good
    Technology

    How AI and ML are changing insurance for good

    How AI and ML are changing insurance for good

    Published by linker 5

    Posted on September 23, 2020

    Featured image for article about Technology

    By Alan O’Loughlin, Director of Analytics and Statistical Modelling, International and John Beal, Senior Vice President of Analytics at LexisNexis® Risk Solutions

    The Insurance industry has been dealing with vast volumes of data for years, but analytics, Artificial Intelligence (AI) and Machine Learning (ML) techniques are increasingly being used to help insurance providers make faster data driven decisions.  Given the exponential level of data available today with AI/ML, insurance providers can now efficiently extract new insights into their customer’s needs and create stronger long-term value.

    Personalising Insurance Pricing

    Starting with how the market calculates premiums, the insurance sector now has access to thousands of data points to help them calculate premiums. Machine learning algorithms expedite the identification of the most predictive attributes driving claims losses – the most recent data points being historical cancellation data and gaps in cover.

    This helps insurers become more competitive, match their risks to the most appropriate pricing strategies and write the risks that meet their underwriting appetite. In turn, customers get more personalised quotes based on their unique risk characteristics across any line of business

    Achieving a single customer view

    Personalisation within any sector works best of course when you really know who you are dealing with. Today, an explosive amount of data is collected, but it is vastly under-utilised as many organisations do not have the expertise to bring data together from different parts of the business to create a single customer view.  Add to this, the amount of mergers and acquisitions in the insurance market over the past few years and the challenge of managing multiple customer databases.  Linking and matching technology using policy history data to find common threads helps overcome this problem to create one consolidated view of the customer. Optimised matching algorithms are also the most accurate and relevant data is reviewed, reducing consumer friction during the quoting process.

    Normalisation makes sense of masses of data

    In the same vein, as organisations aggregate massive volumes of data, the value of cleansing and normalisation can’t be overlooked. One example, as usage-based insurance develops, whether through aftermarket telematics devices, smartphone apps, connected vehicles, even in the future from smart home data, all that data needs to be gathered, normalised, standardised. That way, any consumer can enjoy an improved shopping experience based on their needs and preferences, no matter the device brand and insurers have consistent quality standards and outcome decisions for all consumers.

    Making Vehicle Data work for insurance

    Data normalisation is already helping insurance providers understand the presence of Advanced Driver Assistance Systems (ADAS) on a vehicle at the quotation stage.  An ADAS classification system has been created using machine learning to scan millions of lines of car manufacturer vehicle data to logically sequence and classify vehicle safety features and component’s intended operation or purpose.  Extraction and proper classification of this type of data is extremely difficult, time consuming and error prone without the use of AI/ML

    Thinking big, starting small in motor claims

    At the claims stage in motor insurance, image recognition technology is being used to capture damage or invoices, run a system audit, and if the claim meets the approved criteria, it is automatically paid without human involvement.  This kind of virtual or ‘touchless’ claims handling is speeding up claim settlement times, cutting costs and improving the customer experience.  The ability to quickly analyse years of historical policy and quote history at the consumer level will add an additional level of security prior to a carrier releasing any claim payments.

    Alan O’Loughlin

    Alan O’Loughlin

    Building context through AI and ML

    Staying with motor insurance, telematics data can be used much more broadly than originally intended through AI and ML.  From the point of impact through to claim resolution, telematics data can allow insurance providers to get on the front foot at first notification of loss (FNOL), helping to deliver a better consumer experience post-accident, whilst providing invaluable insights regarding the circumstances of the collision.

    AI/ML techniques communicate the conditions before, during and after the time of the accident.  Data points like air bag deployment impact sensor activation and g-force metrics can be analysed to understand claim severity and bodily injury potential.  In addition, by combining vehicle build data, carriers can understand the repair cost and potential impact to expensive ADAS features.  Insurance providers can instantly also help their customers with emergency services, vehicle rentals and repairs through instant analysis.

    Taking the pain from home insurance applications

    Moving into home insurance, we know that conversion rates of people shopping for home insurance is quite low due to a number of hard to answer questions along the customer journey. Rebuild costs is a classic example.  Prefill and data validation solutions are now helping to solve that problem but they are only possible through a huge amount of modelling, linking and AI-ML techniques to pull all the data together to return accurate and up-to-date information on the person and property.

    Putting customers in the picture

    AI is also at work in the commercial property insurance arena.  It can provide valuable insights regarding a potential location for a new branch or business relocation – footfall, crime rate, exposure to perils or other local circumstances that increase risk. This insight when provided to the customer enables them to take preventative measures if they do go ahead in that location, decreasing risk and loss costs, whilst helping to improve customer experience and retention.

    AI and ML can help in the democratisation of data

    Finally, AI and ML techniques are helping consumers take advantage of their individual data points which in turn provide the most accurate and updated view data to the insurance providers they choose to interact with on their own schedule.

    A good example is the way driving behaviour data from aftermarket devices, or in the future, direct from the connected car gives a clearer picture of someone’s driving risk on the road.  Drivers then benefit from being judged based on their individual behaviours, rather than paying premiums based on average driving habits.

    This requires transparency. Each time a consumer applies for insurance they consent to their data being used to provide the insurer with the best information possible, so they can set an appropriate premium based on the risk. Within insurance, we are focusing more than ever on educating consumers about how their data can be used and evaluated in a way they control and understand.  AI and ML automate and process the data consumers are happy to share – supporting greater choice, improved fairness and reduced friction with more personalised insurance protection.

    Related Posts
    LakeFusion Secures Seed Funding to Advance AI-Native Master Data Management
    LakeFusion Secures Seed Funding to Advance AI-Native Master Data Management
    Clarity, Context, Confidence: Explainable AI and the New Era of Investor Trust
    Clarity, Context, Confidence: Explainable AI and the New Era of Investor Trust
    Data Intelligence Transforms the Future of Credit Risk Strategy
    Data Intelligence Transforms the Future of Credit Risk Strategy
    Architect of Integration Ushers in a New Era for AI in Regulated Industries
    Architect of Integration Ushers in a New Era for AI in Regulated Industries
    How One Technologist is Building Self-Healing AI Systems that Could Transform Financial Regulation
    How One Technologist is Building Self-Healing AI Systems that Could Transform Financial Regulation
    SBS is Doubling Down on SaaS to Power the Next Wave of Bank Modernization
    SBS is Doubling Down on SaaS to Power the Next Wave of Bank Modernization
    Trust Embedding: Integrating Governance into Next-Generation Data Platforms
    Trust Embedding: Integrating Governance into Next-Generation Data Platforms
    The Guardian of Connectivity: How Rohith Kumar Punithavel Is Redefining Trust in Private Networks
    The Guardian of Connectivity: How Rohith Kumar Punithavel Is Redefining Trust in Private Networks
    BNY Partners With HID and SwiftConnect to Provide Mobile Access to its Offices Around the Globe With Employee Badge in Apple Wallet
    BNY Partners With HID and SwiftConnect to Provide Mobile Access to its Offices Around the Globe With Employee Badge in Apple Wallet
    How Integral’s CTO Chidambaram Bhat is helping to solve  transfer pricing problems through cutting edge AI.
    How Integral’s CTO Chidambaram Bhat is helping to solve transfer pricing problems through cutting edge AI.
    Why Physical Infrastructure Still Matters in a Digital Economy
    Why Physical Infrastructure Still Matters in a Digital Economy
    Why Compliance Has Become an Engineering Problem
    Why Compliance Has Become an Engineering Problem

    Why waste money on news and opinions when you can access them for free?

    Take advantage of our newsletter subscription and stay informed on the go!

    Subscribe

    Previous Technology PostSectigo Selected by Baidu to Provide SSL Services for All-New Baidu Trust SSL Certificates
    Next Technology PostHow Assistive Learning Technology Is Making Online Learning Inclusive

    More from Technology

    Explore more articles in the Technology category

    Can AI-Powered Security Prevent $4.2 Billion in Banking Fraud?

    Can AI-Powered Security Prevent $4.2 Billion in Banking Fraud?

    Reimagining Human-Technology Interaction: Sagar Kesarpu’s Mission to Humanize Automation

    Reimagining Human-Technology Interaction: Sagar Kesarpu’s Mission to Humanize Automation

    LeapXpert: How financial institutions can turn shadow messaging from a risk into an opportunity

    LeapXpert: How financial institutions can turn shadow messaging from a risk into an opportunity

    Intelligence in Motion: Building Predictive Systems for Global Operations

    Intelligence in Motion: Building Predictive Systems for Global Operations

    Predictive Analytics and Strategic Operations: Strengthening Supply Chain Resilience

    Predictive Analytics and Strategic Operations: Strengthening Supply Chain Resilience

    How Nclude.ai   turned broken portals into completed applications

    How Nclude.ai turned broken portals into completed applications

    The Silent Shift: Rethinking Services for a Digital World?

    The Silent Shift: Rethinking Services for a Digital World?

    Culture as Capital: How Woxa Corporation Is Redefining Fintech Sustainability

    Culture as Capital: How Woxa Corporation Is Redefining Fintech Sustainability

    Securing the Future: We're Fixing Cyber Resilience by Finally Making Compliance Cool

    Securing the Future: We're Fixing Cyber Resilience by Finally Making Compliance Cool

    Supply chain security risks now innumerable and unmanageable for majority of cybersecurity leaders, IO research reveals

    Supply chain security risks now innumerable and unmanageable for majority of cybersecurity leaders, IO research reveals

    Why AI's Promise of Efficiency May Break Tomorrow's Workforce

    Why AI's Promise of Efficiency May Break Tomorrow's Workforce

    Revolutionizing AppSec: The AI Security Crew Paradigm Shift

    Revolutionizing AppSec: The AI Security Crew Paradigm Shift

    View All Technology Posts