Search
00
GBAF Logo
trophy
Top StoriesInterviewsBusinessFinanceBankingTechnologyInvestingTradingVideosAwardsMagazinesHeadlinesTrends

Subscribe to our newsletter

Get the latest news and updates from our team.

Global Banking and Finance Review

Global Banking & Finance Review

Company

    GBAF Logo
    • About Us
    • Profile
    • Privacy & Cookie Policy
    • Terms of Use
    • Contact Us
    • Advertising
    • Submit Post
    • Latest News
    • Research Reports
    • Press Release
    • Awards▾
      • About the Awards
      • Awards TimeTable
      • Submit Nominations
      • Testimonials
      • Media Room
      • Award Winners
      • FAQ
    • Magazines▾
      • Global Banking & Finance Review Magazine Issue 79
      • Global Banking & Finance Review Magazine Issue 78
      • Global Banking & Finance Review Magazine Issue 77
      • Global Banking & Finance Review Magazine Issue 76
      • Global Banking & Finance Review Magazine Issue 75
      • Global Banking & Finance Review Magazine Issue 73
      • Global Banking & Finance Review Magazine Issue 71
      • Global Banking & Finance Review Magazine Issue 70
      • Global Banking & Finance Review Magazine Issue 69
      • Global Banking & Finance Review Magazine Issue 66
    Top StoriesInterviewsBusinessFinanceBankingTechnologyInvestingTradingVideosAwardsMagazinesHeadlinesTrends

    Global Banking & Finance Review® is a leading financial portal and online magazine offering News, Analysis, Opinion, Reviews, Interviews & Videos from the world of Banking, Finance, Business, Trading, Technology, Investing, Brokerage, Foreign Exchange, Tax & Legal, Islamic Finance, Asset & Wealth Management.
    Copyright © 2010-2025 GBAF Publications Ltd - All Rights Reserved.

    ;
    Editorial & Advertiser disclosure

    Global Banking and Finance Review is an online platform offering news, analysis, and opinion on the latest trends, developments, and innovations in the banking and finance industry worldwide. The platform covers a diverse range of topics, including banking, insurance, investment, wealth management, fintech, and regulatory issues. The website publishes news, press releases, opinion and advertorials on various financial organizations, products and services which are commissioned from various Companies, Organizations, PR agencies, Bloggers etc. These commissioned articles are commercial in nature. This is not to be considered as financial advice and should be considered only for information purposes. It does not reflect the views or opinion of our website and is not to be considered an endorsement or a recommendation. We cannot guarantee the accuracy or applicability of any information provided with respect to your individual or personal circumstances. Please seek Professional advice from a qualified professional before making any financial decisions. We link to various third-party websites, affiliate sales networks, and to our advertising partners websites. When you view or click on certain links available on our articles, our partners may compensate us for displaying the content to you or make a purchase or fill a form. This will not incur any additional charges to you. To make things simpler for you to identity or distinguish advertised or sponsored articles or links, you may consider all articles or links hosted on our site as a commercial article placement. We will not be responsible for any loss you may suffer as a result of any omission or inaccuracy on the website.

    Home > Technology > Elevate AI Management to Reflect Its Strategic Importance
    Technology

    Elevate AI Management to Reflect Its Strategic Importance

    Elevate AI Management to Reflect Its Strategic Importance

    Published by Jessica Weisman-Pitts

    Posted on November 2, 2021

    Featured image for article about Technology

    By Dave Trier, VP of Product at ModelOp 

    Enterprise AI use cases and dependency on them have matured more than management techniques

    Very quickly by enterprise technology adoption standards, artificial intelligence went from something that most large financial institutions were experimenting with to something they are depending on. AI is now entrenched for some banking and insurance operations, and the roles that depend on it are increasing as enterprises roll out new use cases and AI models. The use case expansion, program scaling and AI importance to organizations will only grow – AI could unlock an additional $200 to $300 million in value for banks alone and improve revenue in the sector by 2.5% to 5.2%, according to a 2020 McKinsey study; for insurance, the ranges are $100 to $300 million and 3.2% to 7.1%. Of course, these benefits won’t be universal, and the top performers in enterprise AI will take a disproportionate share.

    The competitive advantage won’t just come from having use cases or algorithms that others haven’t thought of.  Rather, improved AI effectiveness, differentiation, and ROI also comes from how models and other AI-related intellectual property are managed.

    As AI matures, enterprises and technology developers alike are learning more about it. One of the clear and well-documented learnings is that the right use of AI can make companies more profitable. Another learning is that the better AI is managed within an enterprise, the more profitable it can be. This article shares some insights and recommendations on how to manage AI programs in a way that improves performance, and ultimately profitability.

    AI’s Role and Value Have Changed, But Has Its Management?

    AI was born in data science but it doesn’t live there anymore. Artificial intelligence is now squarely in the business domain, with IT support behind the scenes to optimize enterprise operations and, more visibly, by helping line-of-business users through reporting, alerts, dashboards, and other output. Enterprise use of and reliance on AI have grown and matured substantially in the last few years, with more models moving from pilot to production, and more business users depending on them. However, AI enterprise management has not evolved as quickly. Many organizations are still managing AI models with the same processes, people and tools they were as when they had fewer models in production and the models were less business-critical. That stretches both staff resources and the legacy and niche management tools for AI and can be an impediment to its operations and expansion.

    Because AI has risen in enterprise importance, its management needs to be elevated to dedicated roles. In turn, this function should be supported with the right resources, including executive-level attention. AI has become IP you can monetize. It is time to treat it as a strategic asset, and that includes more standardized and centralized management, rather than the fragmented, department-level approach that is common now.

    Leading researchers and strategy advisors, including McKinsey, Deloitte and Gartner, have found correlations between  an organization’s AI management, including executive-level attention, and its AI success. For example:

    • Deloitte said: “To effectively capitalize on the advantages offered by AI, companies may need to fundamentally reconsider how humans and machines interact within their organizations as well as externally with their value chain partners and customers. Rather than taking a siloed approach and having to reinvent the wheel with each new initiative, financial services executives should consider deploying AI tools systematically across their organizations, encompassing every business process and function.”
    • Gartner identified five levels of enterprise AI maturity. C-level ownership of AI initiatives is a characteristic of companies at the top two maturity levels.
    • McKinsey: “We find that companies with leading analytics programs not only focus on model development through their methodologies but also work to continuously maintain and upgrade models as part of a sophisticated model-management function.”

    Enterprises are recognizing the link between strong, dedicated AI management and value too – 44% of executives said their enterprises had centralized or standardized their AI model operationalization practices, and another 17% were actively working towards that in 2021. As part of this transition, enterprises are taking monitoring and management of models that are in production out of developers’ hands and are creating new enterprise-level roles that are responsible for this. Sixty percent of enterprises had model operators or model engineers that were overseeing AI models across the organization in 2021, which is a clear departure from the traditional approach where business units managed their own models, or the same data science teams that developed the models remained responsible for supporting them in operations.

    What Needs to Change?

    Modernizing AI management to align with AI’s elevated strategic importance requires changes to staffing and structure, tooling and prioritization. Things will be different, but making these changes is not especially difficult. Without getting too deep into specifics, enterprises can create an effective, modern framework for AI enterprise management by doing the following three things.

    • Get C-level staff aligned and engaged. Having someone accountable for holistic model management will help reduce risk, ensure policies are applied consistently, reduce redundant management tasks now being done at the business unit/AI-team levels, and provide other benefits that help AI to scale. Providing consistent executive-level oversight and accountability for AI efforts will enhance management effectiveness, further reduce risk, and better inform AI investment decisions. Sharing AI results through business-oriented dashboards (for example providing a count of fraudulent activities detected/prevented, or revenue enhancement to date from improved credit risk scoring) along with traditional IT-oriented dashboards (e.g. showing models in production, uptime, incidents) will help executives and business users across the organization become more invested in AI success. If you’re not getting this kind of output from your model management, that’s another sign you should upgrade it. Your artificial intelligence is an IP asset and a strategic business differentiator and should be treated as such.
    • Centralize responsibility for AI model management. Models that are in production have much different needs than models that are in development; the roles responsible for these operations should be centralized and dedicated. Having centralized management eliminates redundant work efforts that helps AI scale, provide maximum ROI, and can significantly reduce risk exposure from potential business and compliance violations.
    • Support the centralized management staff with software tooling that is designed for the complete AI model life cycle. Your organization likely has already invested in multiple AI software development tools. The key word there is development. Different functionality is needed to keep models running accurately (and within compliance) for the months or years they spend in production. Key management functionality needed at this stage includes input and output quality monitoring with real-time alerts, automated policy enforcement, compliance validation, quality control testing and more. These needs must be consistently met for all enterprise AI models, regardless of their function or how they were developed. A previous article provides more details, and this McKinsey quote provides validation: “We find that companies with leading analytics programs not only focus on model development through their methodologies but also work to continuously maintain and upgrade models as part of a sophisticated model-management function.”

    Another reason AI needs more centralized and comprehensive management is that it is no longer siloed. AI model outputs are increasingly part of day-to-day business operations across the enterprise, both directly and indirectly. A company’s AI models have become key contributors to its systems of record (e.g. ERP, finance) and systems of engagement (CRM, e-commerce). In 2021, 70% of companies had integrated data from their risk management applications into their AI model operations processes, and 62% had integrated business applications. AI’s reach now extends beyond its original models. It also likely extends beyond the model developers’ ability to see and control – especially if their job responsibilities incent them to prioritize creating new models over maintaining existing ones.

    When AI is successful it improves revenue and productivity. When AI is unsuccessful it raises compliance issues and other business risks. Therefore, it is useful to not view AI models for what they are (algorithms and data) but for what they do – guide lending and pricing decisions, determine risk, etc. Because AI is now so closely tied to enterprise success, its management needs to be elevated to enterprise level. That strategy can be put into practice with adjustments to the AI management structure, supporting software and executive management commitment.

    About Author:

    Dave Trier, VP of Product at ModelOp and their ModelOp Center product.  Dave has over 15 years of experience helping enterprises implement transformational business strategies using innovative technologies—from AI, big data, cloud, to IoT solutions. Currently, Dave serves as the VP Product for ModelOp charged with defining and executing the product and solutions portfolio to help companies overcome their ModelOps challenges and realize their AI transformation.

    This is a Sponsored Feature

    By Dave Trier, VP of Product at ModelOp 

    Enterprise AI use cases and dependency on them have matured more than management techniques

    Very quickly by enterprise technology adoption standards, artificial intelligence went from something that most large financial institutions were experimenting with to something they are depending on. AI is now entrenched for some banking and insurance operations, and the roles that depend on it are increasing as enterprises roll out new use cases and AI models. The use case expansion, program scaling and AI importance to organizations will only grow – AI could unlock an additional $200 to $300 million in value for banks alone and improve revenue in the sector by 2.5% to 5.2%, according to a 2020 McKinsey study; for insurance, the ranges are $100 to $300 million and 3.2% to 7.1%. Of course, these benefits won’t be universal, and the top performers in enterprise AI will take a disproportionate share.

    The competitive advantage won’t just come from having use cases or algorithms that others haven’t thought of.  Rather, improved AI effectiveness, differentiation, and ROI also comes from how models and other AI-related intellectual property are managed.

    As AI matures, enterprises and technology developers alike are learning more about it. One of the clear and well-documented learnings is that the right use of AI can make companies more profitable. Another learning is that the better AI is managed within an enterprise, the more profitable it can be. This article shares some insights and recommendations on how to manage AI programs in a way that improves performance, and ultimately profitability.

    AI’s Role and Value Have Changed, But Has Its Management?

    AI was born in data science but it doesn’t live there anymore. Artificial intelligence is now squarely in the business domain, with IT support behind the scenes to optimize enterprise operations and, more visibly, by helping line-of-business users through reporting, alerts, dashboards, and other output. Enterprise use of and reliance on AI have grown and matured substantially in the last few years, with more models moving from pilot to production, and more business users depending on them. However, AI enterprise management has not evolved as quickly. Many organizations are still managing AI models with the same processes, people and tools they were as when they had fewer models in production and the models were less business-critical. That stretches both staff resources and the legacy and niche management tools for AI and can be an impediment to its operations and expansion.

    Because AI has risen in enterprise importance, its management needs to be elevated to dedicated roles. In turn, this function should be supported with the right resources, including executive-level attention. AI has become IP you can monetize. It is time to treat it as a strategic asset, and that includes more standardized and centralized management, rather than the fragmented, department-level approach that is common now.

    Leading researchers and strategy advisors, including McKinsey, Deloitte and Gartner, have found correlations between  an organization’s AI management, including executive-level attention, and its AI success. For example:

    • Deloitte said: “To effectively capitalize on the advantages offered by AI, companies may need to fundamentally reconsider how humans and machines interact within their organizations as well as externally with their value chain partners and customers. Rather than taking a siloed approach and having to reinvent the wheel with each new initiative, financial services executives should consider deploying AI tools systematically across their organizations, encompassing every business process and function.”
    • Gartner identified five levels of enterprise AI maturity. C-level ownership of AI initiatives is a characteristic of companies at the top two maturity levels.
    • McKinsey: “We find that companies with leading analytics programs not only focus on model development through their methodologies but also work to continuously maintain and upgrade models as part of a sophisticated model-management function.”

    Enterprises are recognizing the link between strong, dedicated AI management and value too – 44% of executives said their enterprises had centralized or standardized their AI model operationalization practices, and another 17% were actively working towards that in 2021. As part of this transition, enterprises are taking monitoring and management of models that are in production out of developers’ hands and are creating new enterprise-level roles that are responsible for this. Sixty percent of enterprises had model operators or model engineers that were overseeing AI models across the organization in 2021, which is a clear departure from the traditional approach where business units managed their own models, or the same data science teams that developed the models remained responsible for supporting them in operations.

    What Needs to Change?

    Modernizing AI management to align with AI’s elevated strategic importance requires changes to staffing and structure, tooling and prioritization. Things will be different, but making these changes is not especially difficult. Without getting too deep into specifics, enterprises can create an effective, modern framework for AI enterprise management by doing the following three things.

    • Get C-level staff aligned and engaged. Having someone accountable for holistic model management will help reduce risk, ensure policies are applied consistently, reduce redundant management tasks now being done at the business unit/AI-team levels, and provide other benefits that help AI to scale. Providing consistent executive-level oversight and accountability for AI efforts will enhance management effectiveness, further reduce risk, and better inform AI investment decisions. Sharing AI results through business-oriented dashboards (for example providing a count of fraudulent activities detected/prevented, or revenue enhancement to date from improved credit risk scoring) along with traditional IT-oriented dashboards (e.g. showing models in production, uptime, incidents) will help executives and business users across the organization become more invested in AI success. If you’re not getting this kind of output from your model management, that’s another sign you should upgrade it. Your artificial intelligence is an IP asset and a strategic business differentiator and should be treated as such.
    • Centralize responsibility for AI model management. Models that are in production have much different needs than models that are in development; the roles responsible for these operations should be centralized and dedicated. Having centralized management eliminates redundant work efforts that helps AI scale, provide maximum ROI, and can significantly reduce risk exposure from potential business and compliance violations.
    • Support the centralized management staff with software tooling that is designed for the complete AI model life cycle. Your organization likely has already invested in multiple AI software development tools. The key word there is development. Different functionality is needed to keep models running accurately (and within compliance) for the months or years they spend in production. Key management functionality needed at this stage includes input and output quality monitoring with real-time alerts, automated policy enforcement, compliance validation, quality control testing and more. These needs must be consistently met for all enterprise AI models, regardless of their function or how they were developed. A previous article provides more details, and this McKinsey quote provides validation: “We find that companies with leading analytics programs not only focus on model development through their methodologies but also work to continuously maintain and upgrade models as part of a sophisticated model-management function.”

    Another reason AI needs more centralized and comprehensive management is that it is no longer siloed. AI model outputs are increasingly part of day-to-day business operations across the enterprise, both directly and indirectly. A company’s AI models have become key contributors to its systems of record (e.g. ERP, finance) and systems of engagement (CRM, e-commerce). In 2021, 70% of companies had integrated data from their risk management applications into their AI model operations processes, and 62% had integrated business applications. AI’s reach now extends beyond its original models. It also likely extends beyond the model developers’ ability to see and control – especially if their job responsibilities incent them to prioritize creating new models over maintaining existing ones.

    When AI is successful it improves revenue and productivity. When AI is unsuccessful it raises compliance issues and other business risks. Therefore, it is useful to not view AI models for what they are (algorithms and data) but for what they do – guide lending and pricing decisions, determine risk, etc. Because AI is now so closely tied to enterprise success, its management needs to be elevated to enterprise level. That strategy can be put into practice with adjustments to the AI management structure, supporting software and executive management commitment.

    About Author:

    Dave Trier, VP of Product at ModelOp and their ModelOp Center product.  Dave has over 15 years of experience helping enterprises implement transformational business strategies using innovative technologies—from AI, big data, cloud, to IoT solutions. Currently, Dave serves as the VP Product for ModelOp charged with defining and executing the product and solutions portfolio to help companies overcome their ModelOps challenges and realize their AI transformation.

    This is a Sponsored Feature

    Related Posts
    Treasury transformation must be built on accountability and trust
    Treasury transformation must be built on accountability and trust
    Financial services: a human-centric approach to managing risk
    Financial services: a human-centric approach to managing risk
    LakeFusion Secures Seed Funding to Advance AI-Native Master Data Management
    LakeFusion Secures Seed Funding to Advance AI-Native Master Data Management
    Clarity, Context, Confidence: Explainable AI and the New Era of Investor Trust
    Clarity, Context, Confidence: Explainable AI and the New Era of Investor Trust
    Data Intelligence Transforms the Future of Credit Risk Strategy
    Data Intelligence Transforms the Future of Credit Risk Strategy
    Architect of Integration Ushers in a New Era for AI in Regulated Industries
    Architect of Integration Ushers in a New Era for AI in Regulated Industries
    How One Technologist is Building Self-Healing AI Systems that Could Transform Financial Regulation
    How One Technologist is Building Self-Healing AI Systems that Could Transform Financial Regulation
    SBS is Doubling Down on SaaS to Power the Next Wave of Bank Modernization
    SBS is Doubling Down on SaaS to Power the Next Wave of Bank Modernization
    Trust Embedding: Integrating Governance into Next-Generation Data Platforms
    Trust Embedding: Integrating Governance into Next-Generation Data Platforms
    The Guardian of Connectivity: How Rohith Kumar Punithavel Is Redefining Trust in Private Networks
    The Guardian of Connectivity: How Rohith Kumar Punithavel Is Redefining Trust in Private Networks
    BNY Partners With HID and SwiftConnect to Provide Mobile Access to its Offices Around the Globe With Employee Badge in Apple Wallet
    BNY Partners With HID and SwiftConnect to Provide Mobile Access to its Offices Around the Globe With Employee Badge in Apple Wallet
    How Integral’s CTO Chidambaram Bhat is helping to solve  transfer pricing problems through cutting edge AI.
    How Integral’s CTO Chidambaram Bhat is helping to solve transfer pricing problems through cutting edge AI.

    Why waste money on news and opinions when you can access them for free?

    Take advantage of our newsletter subscription and stay informed on the go!

    Subscribe

    Previous Technology PostAdverty wins third US patent for BrainImpression™, bringing ad viewability technology to gaming on mobile, TV screens and the wider metaverse
    Next Technology PostComputer mouse maker Logitech hit by supply chain problems

    More from Technology

    Explore more articles in the Technology category

    Why Physical Infrastructure Still Matters in a Digital Economy

    Why Physical Infrastructure Still Matters in a Digital Economy

    Why Compliance Has Become an Engineering Problem

    Why Compliance Has Become an Engineering Problem

    Can AI-Powered Security Prevent $4.2 Billion in Banking Fraud?

    Can AI-Powered Security Prevent $4.2 Billion in Banking Fraud?

    Reimagining Human-Technology Interaction: Sagar Kesarpu’s Mission to Humanize Automation

    Reimagining Human-Technology Interaction: Sagar Kesarpu’s Mission to Humanize Automation

    LeapXpert: How financial institutions can turn shadow messaging from a risk into an opportunity

    LeapXpert: How financial institutions can turn shadow messaging from a risk into an opportunity

    Intelligence in Motion: Building Predictive Systems for Global Operations

    Intelligence in Motion: Building Predictive Systems for Global Operations

    Predictive Analytics and Strategic Operations: Strengthening Supply Chain Resilience

    Predictive Analytics and Strategic Operations: Strengthening Supply Chain Resilience

    How Nclude.ai   turned broken portals into completed applications

    How Nclude.ai turned broken portals into completed applications

    The Silent Shift: Rethinking Services for a Digital World?

    The Silent Shift: Rethinking Services for a Digital World?

    Culture as Capital: How Woxa Corporation Is Redefining Fintech Sustainability

    Culture as Capital: How Woxa Corporation Is Redefining Fintech Sustainability

    Securing the Future: We're Fixing Cyber Resilience by Finally Making Compliance Cool

    Securing the Future: We're Fixing Cyber Resilience by Finally Making Compliance Cool

    Supply chain security risks now innumerable and unmanageable for majority of cybersecurity leaders, IO research reveals

    Supply chain security risks now innumerable and unmanageable for majority of cybersecurity leaders, IO research reveals

    View All Technology Posts