Editorial & Advertiser Disclosure Global Banking And Finance Review is an independent publisher which offers News, information, Analysis, Opinion, Press Releases, Reviews, Research reports covering various economies, industries, products, services and companies. The content available on globalbankingandfinance.com is sourced by a mixture of different methods which is not limited to content produced and supplied by various staff writers, journalists, freelancers, individuals, organizations, companies, PR agencies Sponsored Posts etc. The information available on this website is purely for educational and informational purposes only. We cannot guarantee the accuracy or applicability of any of the information provided at globalbankingandfinance.com with respect to your individual or personal circumstances. Please seek professional advice from a qualified professional before making any financial decisions. Globalbankingandfinance.com also links to various third party websites and we cannot guarantee the accuracy or applicability of the information provided by third party websites. Links from various articles on our site to third party websites are a mixture of non-sponsored links and sponsored links. Only a very small fraction of the links which point to external websites are affiliate links. Some of the links which you may click on our website may link to various products and services from our partners who may compensate us if you buy a service or product or fill a form or install an app. This will not incur additional cost to you. A very few articles on our website are sponsored posts or paid advertorials. These are marked as sponsored posts at the bottom of each post. For avoidance of any doubts and to make it easier for you to differentiate sponsored or non-sponsored articles or links, you may consider all articles on our site or all links to external websites as sponsored . Please note that some of the services or products which we talk about carry a high level of risk and may not be suitable for everyone. These may be complex services or products and we request the readers to consider this purely from an educational standpoint. The information provided on this website is general in nature. Global Banking & Finance Review expressly disclaims any liability without any limitation which may arise directly or indirectly from the use of such information.

How Machine Learning is transforming the way in which financial institutions approach risk management

Jason Robson is Head of Software Development at Equiniti Riskfactor

Machine Learning (ML) is a branch of the more commonly understood field of Artificial Intelligence (AI), the subject of many Hollywood dystopian ‘rise-of-the-machines’ style movies.

In essence, Artificial Intelligence attempts to mimic human intelligence or behaviours. Machine Learning attempts to analyse and associate patterns of behaviour in diverse data sets to support data-driven decision making based on new knowledge and understanding.

Traditional risk models have used statistical or expert-driven heuristics, but now the next generation of risk analytics is taking advantage of the work being done in this growing field of Data Science.

As fraud is thankfully a relatively a rare occurrence within an organisation, developing simulation tools is key to understanding the lifecycle of a fraud. Using real world examples, we are now able to model the patterns of behaviour surrounding a fraud in order to reproduce the event with diverse sets of changing dynamics. This allows us to represent and understand the fraud over a range of time periods and with utilising differing levels of funding.

Most of the work of a Data Scientist is at this (slightly unglamorous) end of the workflow – essentially the acquisition of test data and its transformation into more suitable forms for use in data analytics.

‘Data Munging’ is the delightful phrase that has been given to this activity.

Aside from a background in probability and statistics, the Data Scientist’s toolbox consists of technologies such as the programming languages Python and R, which can be tailored to accommodate statistical computing and graphics.

Cloud computing providers such as Microsoft Azure and Amazon also have services dedicated to Machine Learning problem domains.

Machine Learning algorithms allow the matching of patterns and connections that can’t be expressed easily, or even at all, by people. Imagine the field of speech recognition, where devices from Google, Amazon and Apple can not only identify what is being said, but which person in a household is saying it.

The unique patterns of speech can be recognised even though the reasons why could never be easily conveyed to its owner in words. Now swap the rises and falls in pitch and amplitude with time series metrics derived from a commercial finance facility, and you will immediately see the future possibilities we are exploring.

The abundance of data that surrounds us covers not only our work lives and business connections, but also information about our social interests and friends. This rich picture will play a hugely important role in fully understanding the events we wish to model.

The wealth of data in the world we inhabit today is moving the bar above mere fraud detection,towards future fraud prediction. And yes, if you are thinking ‘Minority Report’, Hollywood does seem to have got there first).