Editorial & Advertiser Disclosure Global Banking And Finance Review is an independent publisher which offers News, information, Analysis, Opinion, Press Releases, Reviews, Research reports covering various economies, industries, products, services and companies. The content available on globalbankingandfinance.com is sourced by a mixture of different methods which is not limited to content produced and supplied by various staff writers, journalists, freelancers, individuals, organizations, companies, PR agencies Sponsored Posts etc. The information available on this website is purely for educational and informational purposes only. We cannot guarantee the accuracy or applicability of any of the information provided at globalbankingandfinance.com with respect to your individual or personal circumstances. Please seek professional advice from a qualified professional before making any financial decisions. Globalbankingandfinance.com also links to various third party websites and we cannot guarantee the accuracy or applicability of the information provided by third party websites. Links from various articles on our site to third party websites are a mixture of non-sponsored links and sponsored links. Only a very small fraction of the links which point to external websites are affiliate links. Some of the links which you may click on our website may link to various products and services from our partners who may compensate us if you buy a service or product or fill a form or install an app. This will not incur additional cost to you. A very few articles on our website are sponsored posts or paid advertorials. These are marked as sponsored posts at the bottom of each post. For avoidance of any doubts and to make it easier for you to differentiate sponsored or non-sponsored articles or links, you may consider all articles on our site or all links to external websites as sponsored . Please note that some of the services or products which we talk about carry a high level of risk and may not be suitable for everyone. These may be complex services or products and we request the readers to consider this purely from an educational standpoint. The information provided on this website is general in nature. Global Banking & Finance Review expressly disclaims any liability without any limitation which may arise directly or indirectly from the use of such information.

THE FINANCIAL VALUE OF DATA QUALITY

Boris Huard, MD, Experian Data Quality

We are constantly hearing about the fact that the issue of data quality is rapidly moving up the corporate agenda to become a board level discussion – dawning the age of the Chief Data Officer.

One of the key drivers for this is the realisation that data has a financial value – either in its own right or via the impact it can have on business processes and outcomes that drive the profitability of the organisation at large.

However, despite this, there is still all to often a sense of apathy towards tackling the data quality challenge. As a result many organisations are still struggling to make the case for larger corporate wide data improvement initiatives. This is largely driven as a result of ‘data quality champions’ within the organisation being poorly equipped to make the linkages required between data inaccuracy and overall business performance.

Boris Huard
Boris Huard

When it comes to data quality it’s essential to start thinking about the long game and how it specifically pertains to customer or party data. Customer data is not only the lifeblood to the effective operation of an organisation – it also has commercial value. This will become more and more apparent as business models around data evolve. Gartner state that by 2016, 30% of businesses will have begun directly or indirectly monetizing their information assets via bartering or selling them outright.

So why do organisations struggle to put a value on their customer data assets?

One of the key factors here is visibility and ownership at a corporate wide level. Many organisations today hold data within a multitude of silos perceived to be owned by a range of individuals around either lines of business or the IT department itself. This is probably exemplified best when you look at statistics around the roll out of data quality technology investment, with most deployments pertaining to one project or department and very few spanning more than three projects or departments.

Another key challenge is that there are often ‘hard’ and ‘soft’ benefits associated with any technology investment. Many of the benefits of investing in data quality are perceived to sit in the ‘soft’ (difficult to prove) bucket. This is because a lot of the upside sits in improved operational efficiency. Take labour productivity as an example. Gartner state that Data Quality impacts overall labour productivity by as much as 20%. This highlights the importance of data quality as a critical enabler to process quality. Data champions within organisations today need to start mapping the impact of data quality back to real life – and ideally measurable – business processes such as customer care performance or on time delivery.

One size fits all never fits anyone particularly well…

Therefore to convince any board to move forward with an investment in a data quality initiative it’s essential for them to see for themselves the cost of data inaccuracy as it pertains to their own organisation. The good news is technology can enable this utopia and the market at large is starting to wake up to that fact. This is evidenced in the circa 10% increase in the adoption of data profiling and discovery tools between 2012 and 2013.

The key is to select technology that can tell you not just the percentage of data inaccuracy that exists in your organization’s customer data today, but to connect the dots between inaccurate customer data and ‘things’ such as customer value, helping to put a value on your data quality problem. Taking this approach in the early stages of scoping a data quality initiative will give you the ammunition you need at board level, whilst identifying the low hanging fruit for data improvement.